Alteration of Terrain Application

Milford Rashid Gas Station

Tax Map 43, Lot 20-2 South Street Milford, New Hampshire

February 19, 2024

KNA Project No. 21-0526-1A

Prepared For: 689 North Main Street LLC 689 North Main Street Leominster, Massachusetts 01453

Prepared By: Keach-Nordstrom Associates, Inc. 10 Commerce Park North, Suite 3 Bedford, New Hampshire 03110 (603) 627-2881 (603) 627-2915 (fax)

Civil Engineering

Land Surveying

Landscape Architecture

Table of Contents

- 1. SIGNED OWNER & APPLICANT AFFIDAVITS
- 2. AOT APPLICATION
- 3. AOT APPLICATION CHECKLIST
- 4. COPY OF AOT APPLICATION CHECK
- 5. MUNICIPAL SUBMISSION: CITY OF MANCHESTER
- 6. USGS LOCATION MAP
- 7. PROJECT NARRATIVE
- 8. SURFACE WATER IMPAIRMENTS
- 9. SCREENING LAYERS
- 10. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY LETTER
- 11. WEB SOIL SURVEY
- 12. AERIAL
- **13. SITE PHOTOGRAPHS**
- **14. BMP WORKSHEETS**
- **15. EXTREME PRECIPITATION TABLE**
- **16. RIP-RAP CALCULATIONS**
- 17. HYDROCAD DRAINAGE ANALYSIS PRE-DEVELOPMENT MODEL
 - POST-DEVELOPMENT MODEL
- **18. SITE SPECIFIC SOIL SURVEY REPORT**
- 19. OPERATION and MAINTENANCE PLAN with CHECKLIST
- 20. APPENDICES

NON-RESIDENTIAL SITE PLAN (22"x34" - Colorless) PRE-DEVELOPMENT DRAIN AREA PLAN (22"x34" - Colorless) POST-DEVELOPMENT DRAIN AREA PLAN (22"x34" - Colorless) PRE-DEVELOPMENT DRAIN AREA PLAN (22"x34" - with Color) POST-DEVELOPMENT DRAIN AREA PLAN (22"x34" - with Color)

1. SIGNED OWNER & APPLICANT AFFIDAVITS

١

I, <u>Steven Desmanals</u>, authorized representative of Salt Creek Properties LLC and owner of the properties referenced on Tax Map 43 as Lots 20-2 & 20, located on South Street in Milford, New Hampshire, hereby verify that I have authorized Keach-Nordstrom Associates, Inc. to submit on my behalf, any and all applicable State and local permit applications as they pertain to improvements on said property.

Additionally, I authorize Keach-Nordstrom Associates, Inc. to aid in the representation of these applications throughout the approval process.

Signature of Owner:

Printed Name of Owner:

Address of Owner:

Date:

I, <u>Rashid Amin</u>, authorized representative of 689 North Main Street LLC and applicant for the project referenced on Tax Map 43 as Lots 20-2 & 20, located on South Street in Milford, New Hampshire, hereby verify that I have authorized Keach-Nordstrom Associates, Inc. to submit on my behalf, any and all applicable State and local permit applications as they pertain to improvements on said property.</u>

Additionally, I authorize Keach-Nordstrom Associates, Inc. to aid in the representation of these applications throughout the approval process.

Signature of Applicant:

Printed Name of Applicant:

Address of Applicant:

Asure of Kashid Amin 689 North main st Leomnster mg 01453 02/15/2024

Date:

2. AOT APPLICATION

ALTERATION OF TERRAIN PERMIT APPLICATION

Water Division / Land Resources Management

Check the status of your application

RSA / Rule: RSA 485-A:17, Env-Wq 1500

			File Nu	File Number.			
Administrative	Administrative	Administrativ	e Check	Sheck No.			
Use Only	Use Only	Use Only	Amour	15			
			Initials				
1. APPLICANT INFORMATION							
Applicant Name: 689 North Mai		Contact Name: Ras	shid Amin				
Email: rashidamin246@gmail.co			Daytime Telephone: (978) 549-2222				
Mailing Address: 689 North Mai							
Town/City: Leominster		State: MA	ZIP Code: 01453				
2. APPLICANT'S AGENT INFOR	MATION If none, check here	e: 🔳					
Agent's Name:		Contact Name:					
Email:		Daytime Telephon	e:				
Address:		1					
Town/City:			State:	ZIP Code:			
3. PROPERTY OWNER INFORM attach additional sheets as nec	-	APPLICANT) Check he	ere if more than c	one property owner, and			
Owner's Name: Salt Creek Prop	erties LLC	Contact Name: Ste	ve Desmaris				
Email: nhcustombuilder@gmail.c	com	Daytime Telephon	e: (603) 554-1749				
Mailing Address: PO Box 967							
Town/City: Amherst		State: NH	ZIP Code: 03031				
4. PROPERTY OWNER'S AGENT	INFORMATION If none, che	eck here: 🔳					
Business Name: Contact Name							
Email:	Email: Daytime Tel			ione:			
Address:							
Town/City:			State:	ZIP Code:			
5. CONSULTANT INFORMATIO	N If none, check here	:: 🔲					
Engineering Firm: Keach-Nordstrom Associates, Inc. Contact Name: Bridget Souza							
Email:bsouza@keachnordstrom	Daytime Telephon	Daytime Telephone: 603-627-2881					
Address: 10 Commerce Park No	rth, Suite 3						
Town/City: Bedford		State: NH	ZIP Code: 03110				

NHDES-W-01-003

6. PROJECT TYPE						
Excavation Only Residential	Commercial	Golf Course	School	Municipal		
Agricultural Land Conversion	Other:					
7. PROJECT LOCATION INFORMATION						
Project Name: Milford Rashid Gas Station						
Street/Road Address: South Street						
Town/City: Milford	Cou	nty: Hillsborough				
Tax Map: 43 Block:		Lot Number: 20-2 &	20 Unit	t:		
Post-development, will the proposed project wi	thdraw from or dire	ectly discharge to a	ny of the followi	ng? If yes, identify		
the purpose.						
1. Stream or Wetland		Yes [Withdrawal	Discharge		
Purpose:		No No				
2. Artificial pond created by impounding a stre	am or wetland	Yes [Withdrawal	Discharge		
Purpose:		No No				
3. Unlined pond dug into the water table		Yes	Withdrawal	Discharge		
Purpose:		No No				
 Post-development, will the proposed project dis Within one-quarter mile of a surface water im Within one-quarter mile of a Class A surface water im Within one-quarter mile of a Class A surface water im Within one-quarter mile of a lake or pond not Is the project a High Load area? Yes If yes, specify the type of high load land use Is the project within a Water Supply Intake Prot Is the project within a Groundwater Protection will the well setbacks identified in Env-Wq 15 For more details on the restrictions in these are 	paired for phospho vater or within the v covered previously No or activity: Automot ection Area (WSIPA Area (GPA)? 08.02 be met?	watershed area of a ? No Ye ive Service Facility)? Yes N Yes N Yes N N N N N N N N N N N N N N N N N N N	n Outstanding R es lo lo lo	esource Water?		
Is any part of the property within the 100-year f		Yes N				
If yes: Cut volume: cubic feet within the 10						
Fill volume: cubic feet within the 100)-year floodplain.					
Project <i>is</i> within ¼ mile of a designated river Name of River:						
Project <i>is not</i> within ¼ mile of a designated r	iver.					
Project <i>is</i> within a Coastal/Great Bay Region	-					
Project <i>is not</i> within a Coastal/Great Bay Reg	· · · · · · · · · · · · · · · · · · ·					
8. BRIEF PROJECT DESCRIPTION (PLEASE DO NO						
The project proposes to construct a gas drive-thru and all associated site improve parking/access, and utility connections.		-				

NHDES-W-01-003							
9. IF APPLICABLE, DESCRIBE ANY WORK ST	ARTED PRIOR TO RECEIVIN	IG PERMIT.					
N/A							
10. ADDITIONAL REQUIRED INFORMATION							
A. Date a copy of the application was sent to the municipality, as required by Env-Wq 1503.05(e) (Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed): 2-16-2024 (Attach proof of delivery)							
B. Date a copy of the application was sent to the local river advisory committee, if required by Env-Wq 1503.05(e) (Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile of a designated river):							
(Attach proof of delivery)		. [].					
C. Type of plan required: Land Convers	ion [] Detailed Developme	ent 🔄 Excava	ation, Grading and Reclamation				
D. Additional plans required: 🔳 Stormwat	ter Drainage and Hydrologic Management	Soil Groups	Source Control				
E. Total area of disturbance, in square feet	120,605 sf						
 F. Additional impervious cover as a result of the project, in square feet (use "-"to indicate a net reduction in impervious coverage). Total final impervious covers in square feet. 59,460 sf 							
Total final impervious cover, in square feet 59,460 sf G. Total undisturbed cover, in square feet 57,400 sf							
H. Number of lots proposed: N/A							
	N1/A						
I. Total length of roadway, in linear feet: N/A							
J. Name(s) of receiving water(s): Great Brook							
K. Identify all other NHDES permits required for the project. For each, indicate whether an application has been filed and is pending. If the required approval has been issued, provide the permit number, registration date, or approval letter number, as applicable.							
Type of Approval	Application Filed?	Pending?	If Issued				
1. Water Supply Approval							
2. Wetlands Permit							
3. Shoreland Permit							
. UIC Registration Yes No N/A Approval letter date:							
5. Large/Small Community Well Approval Yes No N/A Permit number:							
6. Large Groundwater Withdrawal Permit							
7. Other: Yes No							
L. List all species identified by the Natural N/A	Heritage Bureau as threater	ned or endan	gered or of concern:				

NHDES-W-01-003					
M. Using the NHDES <u>OneStop Data Mapper</u> with the <u>Surface Water Impairment layer</u> turned on, list the impairments identified for each receiving water. If no pollutants are listed, enter "N/A."					
N/A					
N. Did the applicant or applicant's agent	have a pre-application meeting with Alteration of Terrain Bureau staff?				
🗌 Yes 🔳 No	If yes, name of staff member:				
O. Will blasting of bedrock be required?[Yes 🔳 No If yes, estimated quantity of blast rock in cubic yards:				
If yes, <u>standard blasting Best Manager</u>	ment Practices notes must be placed on the plans.				
	ls of blast rock will be generated, a groundwater monitoring program must be Contact Alteration of Terrain Bureau staff for additional detail.				

.

11. CHECK ALL APPLICATION ATTACHMENTS THAT APPLY (SUBMIT WITH APPLICATION IN THE ORDER LISTED BELOW) LOOSE: Signed application form, with attached proof(s) of delivery. Check for the application fee, calculated using the fee schedule available on the NHDES Land Development page. Color copy of a USGS map with the property boundaries outlined (1" = 2,000' scale). If the applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant. BOUND, IN A REPORT, IN THE FOLLOWING ORDER: Copy of the signed application form and application checklist. Copy of the check. Copy of the USGS map with the property boundaries outlined (1'' = 2,000' scale). Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points. Printout of NHDES OneStop Mapper with "Surface Water Impairments" layer turned on. Printout of NHDES OneStop Mapper with Alteration of Terrain screening layers turned on. Printout of Natural Heritage Bureau DataCheck Tool letter and any relevant correspondence with New Hampshire Fish and Game. USDA Web Soil Survey Map with project's watershed outlined. Aerial photograph (1" = 2,000' scale with the site boundaries outlined). Photographs representative of the site. Groundwater recharge volume calculations (include one Best Management Practices worksheet per permit application). Drainage analysis, stamped by a professional engineer (see "Application Checklist" at the end of this document). Riprap apron or other energy dissipation or stability calculations. Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards of the Society of Soil Scientists of Northern New England. Infiltration Feasibility Report (example online) [Env-Wg 1503.08(f)(3)]. Registration and Notification Form for Stormwater Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches). Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)]. Source control plan. **PLANS:** One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details). Pre- and post-development color-coded soil plans on 11" x 17" (see Application Checklist for details). Pre- and post-construction drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details). **100-YEAR FLOODPLAIN REPORT:** All information required in Env-Wg 1503.09, submitted as a separate report. **ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE** See Application Checklist (Attachment A) for details. REVIEW APPLICATION FOR COMPLETENESS. CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

NHDES-W-01-003

12. REQUIRED SIGNATURES

By signing below, I certify that:

- The information contained in or otherwise submitted with this application is true, complete, and not misleading to the best of my knowledge and belief;
- I understand that the submission of false, incomplete, or misleading information constitutes grounds for the department to deny the application, revoke any permit that is granted based on the information, and/or refer the matter to the board of professional engineers established by RSA 310-A:3 if I am a professional engineer; and
- I understand that I am subject to the penalties specified in New Hampshire law for falsification in official matters, currently RSA 641:3.

	APPLICANT'S AGENT:
Signature:	Date:
Name (print or type):	Title:
	PROPERTY OWNER'S AGENT:
Signature: Aug Resman	Date: 2/15/24
Name (print or type): Steven & Desman	95 Title: Manager

3. AOT APPLICATION CHECKLIST

ALTERATION OF TERRAIN PERMIT ATTACHMENT A: APPLICATION CHECKLIST

Check each box to indicate the item has been provided, or indicate why it does not apply.

DESIGN PLANS
Plans printed on 34 - 36" by 22 - 24" white paper.
Professional Engineer stamp.
Wetland delineation.
Temporary erosion control measures.
Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and nonresidential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the New Hampshire Stormwater Management Manual.
Pre-existing 2-foot contours.
Proposed 2-foot contours.
Drainage easements protecting the drainage/treatment structures.
Compliance with state statute governing fill and dredge in <u>wetlands</u> , RSA 482- A. Note that artificial detention in wetlands is prohibited.
Compliance with the New Hampshire Shoreland Protection Act, RSA 483-B.
Benching – needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
Check to see if any proposed ponds require state dam permits.
DETAILS
DETAILS Typical roadway cross-section.
Typical roadway cross-section.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection – riprap aprons.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection – riprap aprons. A general installation detail for an erosion control blanket.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection - riprap aprons. A general installation detail for an erosion control blanket. Silt fences or mulch berm. Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection - riprap aprons. A general installation detail for an erosion control blanket. Silt fences or mulch berm. Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection - riprap aprons. A general installation detail for an erosion control blanket. Silt fences or mulch berm. Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement. Hay bale barriers.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection - riprap aprons. A general installation detail for an erosion control blanket. Silt fences or mulch berm. Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement. Hay bale barriers. Stone check dams.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection - riprap aprons. A general installation detail for an erosion control blanket. Silt fences or mulch berm. Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement. Hay bale barriers. Stone check dams. Gravel construction exit.
 Typical roadway cross-section. Detention basin with inverts noted on the outlet structure. Stone berm level spreader. Outlet protection - riprap aprons. A general installation detail for an erosion control blanket. Silt fences or mulch berm. Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement. Hay bale barriers. Stone check dams. Gravel construction exit. Temporary sediment trap.

NHDES-W-01-003

CONSTRUCTION SEQUENCE / EROSION CONTROL

- Note that the project must be managed to meet the requirements and intent of RSA 430:53 and Agr 3800 relative to <u>invasive species</u>.
- Note that perimeter controls shall be installed prior to earth moving operations.
- Note that temporary water diversion (swales, basins, etc.) must be used as necessary until areas are stabilized.
- Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- INote that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- INote that all cut and fill slopes shall be seeded or loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable."

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.

Note the limit of time an area may be exposed.

Example note: All areas shall be stabilized within 45 days of initial disturbance.

Provide temporary and permanent seeding specifications. Note that although reed canary grass is listed in the Green Book; it is a problematic species according to the Wetlands Bureau and therefore should not be specified.

Provide winter construction notes that meet or exceed our standards. Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces where work has stopped for the winter season shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.

Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." – This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

- Please provide double-side 8 ½" × 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.
- Professional Engineer stamp.
- Rainfall amount obtained from the <u>Northeast Regional Climate Center</u>. Include extreme precipitation table as obtained from this source.
- Drainage analyses, in the following order:
 - Pre-development analysis: Drainage diagram.
 - Pre-development analysis: Area Listing and Soil Listing.
 - Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
 - Pre-development analysis: Full summary of the 10-year storm.
 - Post-development analysis: Drainage diagram.
 - Post-development analysis: Area Listing and Soil Listing.
 - Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
 - Post-development analysis: Full summary of the 10-year storm.

Review the Area Listing and Soil Listing reports

- Hydrologic Soil Groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

Note: A good check is to subtract the total impervious area used in the pre-analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses or units proposed. Do these numbers make sense?

- Check the storage input used to model the ponds.
- Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.
- Check the outlet structure proposed and make sure it matches that modeled.
- Check to see if the total areas in the pre and post analyses are same.
- Confirm the correct NRCS storm type was modeled (Coos, Carroll and Grafton counties are Type II, all others Type III).

PRE- AND POST-CONSTRUCTION DRAINAGE AREA PLANS

- Plans printed on 34 36" by 22 24" on white paper.
- Submit these plans separate from the soil plans.
- A north arrow.
- A scale.
- Labeled subcatchments, reaches and ponds.

NHDES-W-01-003

- 🔳 Tc lines.
- A clear delineation of the subcatchment boundaries.
- Roadway station numbers.
- Culverts and other conveyance structures.

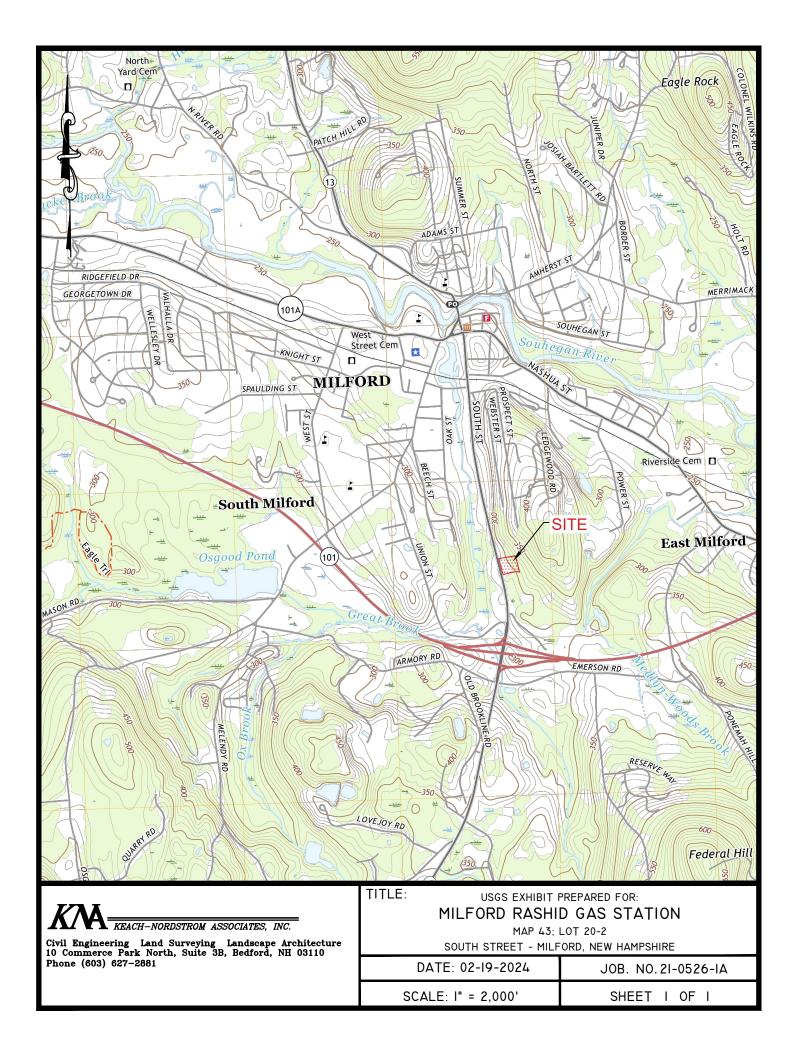
PRE- AND POST-CONSTRUCTION COLOR-CODED SOIL PLANS

- 11" × 17" sheets suitable, as long as it is readable.
- Submit these plans separate from the drainage area plans.
- A north arrow.
- 🔳 A scale.
- Name of the soil scientist who performed the survey and date the soil survey took place.
- 2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.
- Delineation of the soil boundaries and wetland boundaries.
- Delineation of the subcatchment boundaries.
- Soil series symbols (e.g., 26).
- A key or legend identifying each soil series symbol and its associated soil series name (for example: 26 = Windsor).
- The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, and Impervious = gray).

Please note that excavation projects (including gravel pits) have similar requirements to those above, with the following common exceptions or additions:

- Drainage report is not needed if site does not have off-site flow.
- 5-foot contours are allowed rather than 2-foot.
- No Professional Engineer stamp is needed on the plans.
- Add a note to the plans that the applicant must provide NHDES a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.
- Add reclamation notes.
- A description of the subsurface conditions to the planned depth of excavation, including the elevation of the location of the Seasonal High Water Table (SHWT), as observed and described by a certified soil scientist, or an individual holding a valid permit as a permitted designer as issued by the department's Subsurface Systems Bureau.

For more resources, refer to the Natural Resources Conservation Service's <u>Vegetating New Hampshire Sand and Gravel</u> <u>Pits</u> publication.


4. COPY OF AOT APPLICATION CHECK

689 NORTH MAIN STREET LLC 1037 689 N. MAIN ST. LEOMINSTER, MA 01453-1817 53-7169/2118 1719 02/15/2024 CHECK ABMOR LAY TO THE STATE OF NIT \$ 3/25.00 REE thousand n Dollars D Photo Sefe Deposit[®] a division of BerkshireBank 9 faile tu 48 ner FOR STRATE OFNIT ANT FE RP é211871691# 7224480# 1037

ο,

5. MUNICIPAL SUBMISSION: CITY OF MANCHESTER

6. USGS LOCATION MAP

7. **PROJECT NARRATIVE**

I. INTRODUCTION

A. Project Description

The project proposes to clear and grub the existing site to construct a 6,675 gas station convenience store. The store will be equipped with a drive-thru. The gas station will have 6 fueling islands. Other site improvements will include parking and access, stormwater management provisions, and utility connections. The total area of disturbance for construction exceeds 100,000 square feet and therefore does require an Alteration of Terrain Permit.

B. Existing Site Conditions

The subject property, referenced on Milford Tax Map 43 as Lot 20-2, is situated in both the Commercial and Limited Commercial Zoning Districts. The parcel is approximately 2.001 acres and will be 2.687 acres after a proposed Lot Line Adjustment with Lot 20. The property is undeveloped. An isolated wetland is located on site and will be filled. An application has been submitted for the wetland disturbance.

According to the Natural Resources Conservation Service (NRCS) web soil survey, the predominant soil type onsite is Canton fine sand loam, with slopes ranging from 0 -25%. The soils are classified as Hydrologic Soil Groups (HSG) 'A' and 'B' soils. According to the Site-Specific Soil Survey Report, performed in February of 2024 by certified soil scientist, Cynthia Balcius, the area of development consists of Wareham fine sandy loam, Deerfield loamy sand, Newfields fine sandy loam, and Udorthents, of varying slopes ranging from 0-25%.

II. STORM DRAINAGE ANALYSIS & DESIGN

A. Methodology

In accordance with the provisions of the NHDES, Town of Milford, and generally accepted engineering practice, the 2-year, 10-year, 25-year & 50-year frequency storms have each been used in the various aspects of analysis and design of stormwater management considerations for the subject site. All closed drainage systems and Stormwater BMPs have been designed for the 25-year frequency storm, and all proposed stormwater ponds do not overtop in the 50-year frequency storm.

KNA utilizes HydroCAD version 10.0 to analyze both pre and post-development watershed characteristics. This computer software system is based largely on hydrology techniques (TR-20) developed by the Soil Conservation Service (now the Natural Resources Conservation Service). In addition, the software derives Time of Concentration values using the methodology contained within USDA-S.C.S. publication <u>Urban Hydrology for Small</u> <u>Watersheds Technical Release No. 55 (TR 55)</u>.

All design and analysis calculations performed using the referenced methodologies are attached to this report. The minimum time of concentrations used for the analysis is 6 minutes. These calculations document each catchment area, a breakdown of surface type, time of concentration, rainfall intensity, peak discharge volume, Manning's "n" value, peak velocity, and other descriptive design data for each watershed and pipe segment evaluated. In addition, the "Pre/Post Development Drainage Area Plans" graphically define and illustrate the extent of each watershed or catchment area investigated.

B. Pre-Development Drainage Conditions

In the pre-development scenario, two (2) points of analysis (POA) were identified as the appropriate points to compare pre vs. post development rates of stormwater discharge. This point of analysis reflects the main discharge point of the site and were analyzed to show the impact of the proposed improvements.

The pre-development drainage model's POA is further described as follows:

\triangleright	A	South Street Drainage to Great Brook
------------------	---	--------------------------------------

B Nathaniel Dr Catch Basin

In general, the site slopes in a westerly direction toward South Street. Stormwater is collected in a depression with an outlet pipe. The pipe connects to an existing catch basin in South Street.

For a more visual description of the information presented in this section, please refer to the attached "Pre-Development Drainage Areas Plan" attached in the appendix of this report.

C. Post-Development Drainage Conditions:

The same POAs that were identified in the pre-development scenario has been analyzed in the post-development scenario.

The proposed stormwater management system utilizes both open and closed drainage practices for the collection, storage, and treatment of runoff. Stormwater runoff generated from the proposed development is collected by one of four proposed bioretention ponds. The ponds are lined and treated stormwater is collected by underdrains. Three of the ponds are routed to a pipe detention system to mitigate runoff rates. Discharge is then directed to the existing drainage system in South Street.

The proposed use is considering High-Load use, as defined in Env-Wq 1500 and infiltration is not proposed.

The peak stormwater runoff rates for the specific storm frequencies are presented and analyzed in the subsequent summary section of this report (Table 1). For a more visual description of the information presented in this section, please refer to the attached "Post-Development Drainage Areas Plan" attached in the appendix of this report.

Channel Protection Requirements for the Site is met, per Env-Wq 1507.05 (b)(1)b as shown in Table 1.

D. Summary:

The subject site complies with both the City of Manchester Site Plan Review Regulations and NHDES regulations Env-wq 1500 regarding stormwater mitigation. Proposed stormwater best management practices (BMP) are designed in accordance with the <u>New Hampshire Stormwater Manual Volume 2: Post-Construction Best Management Practices Selection and Design</u> and BMP worksheets provided by NHDES. In addition, stormwater discharges, in terms of peak rate of runoff, are consistent with the City of Manchester Stormwater Regulations and NHDES Regulations Env-Wq 1500. The results are reported below in Table 1.

Table 1: Peak Flow Discharge Rate

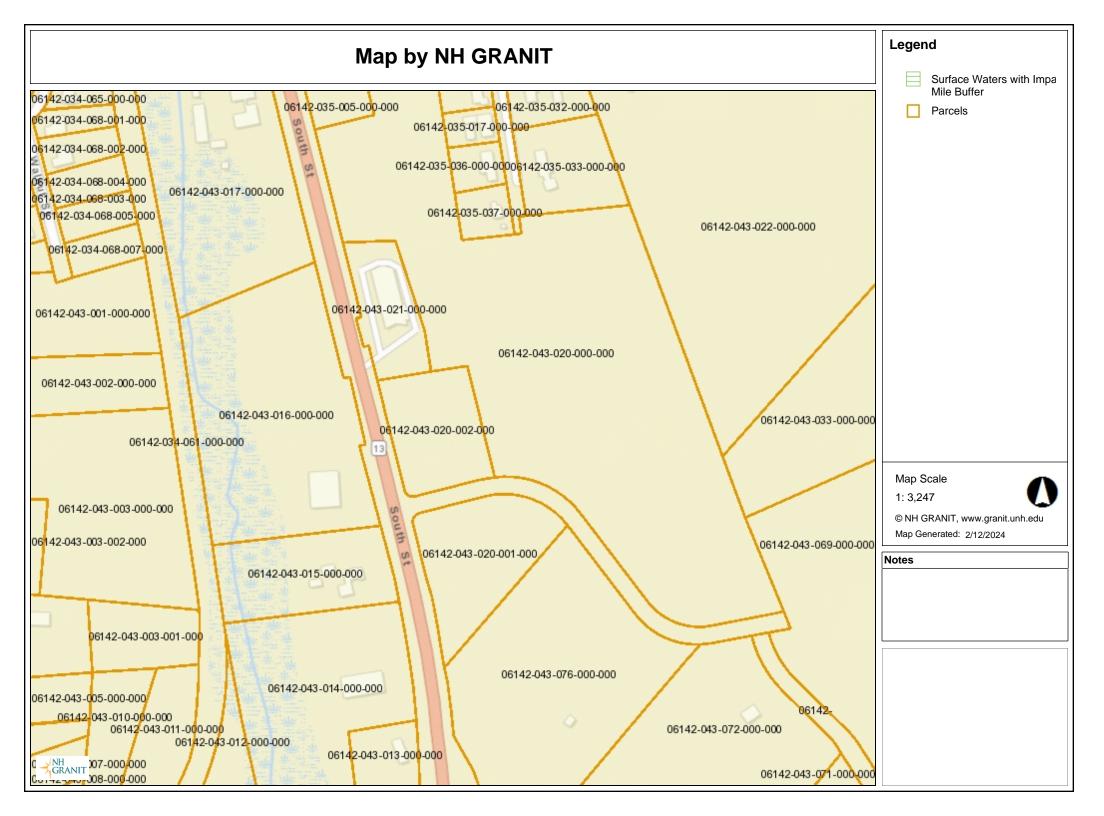
Site Pre-Development vs. Post-Development (cfs)								
Description	2-Year		10-Year		25-Year		50-Year	
24-hr Rainfall	2.96	in/hr	4.41 in/hr		5.53 in/hr		6.57 in/hr	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Α	0.98	0.98	5.84	5.74	11.60	10.78	17.82	16.16
В	0.00	0.00	0.02	0.01	0.03	0.02	0.04	0.04

III. EROSION & SEDIMENTATION CONTROL PROVISIONS

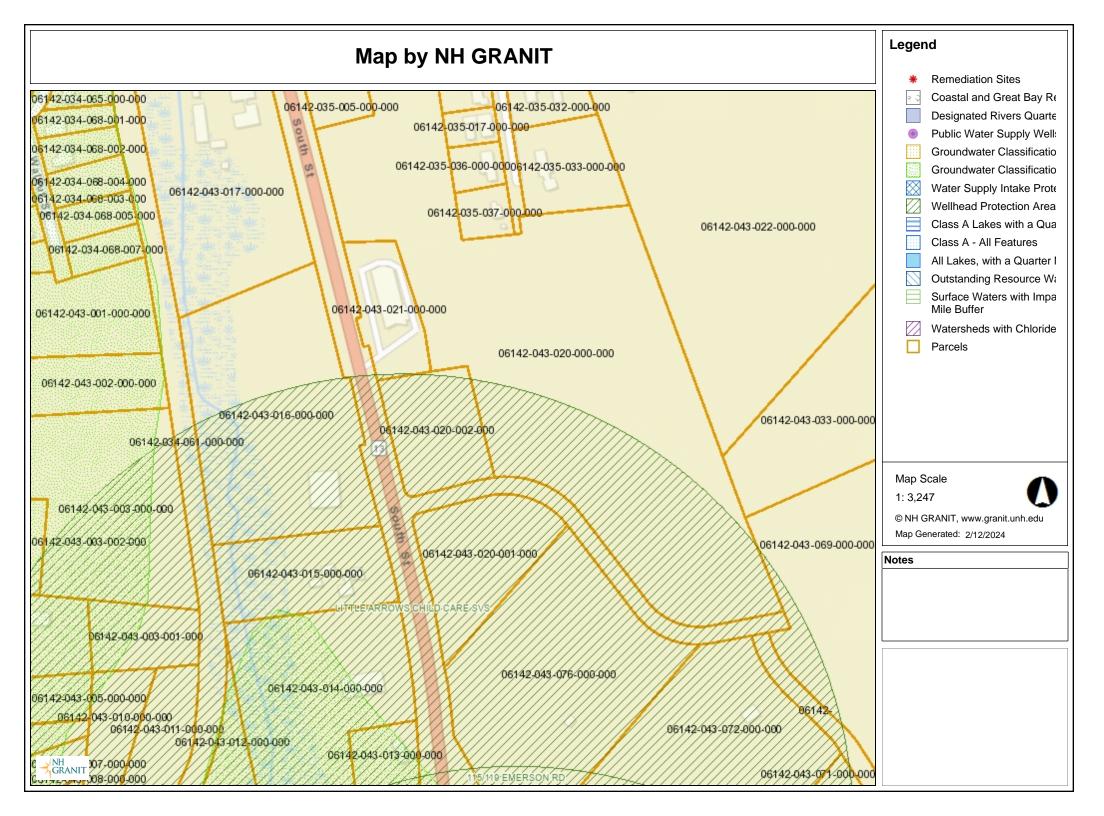
A. Temporary Erosion Control Measures

As an integral part of the engineering design of this site, an erosion and sedimentation control plan has been developed with the intent of limiting the potential for soil loss and associated receiving water quality degradation, both during and after the construction period. As the project plans indicate, traditional temporary erosion and sedimentation control devices and practices, such as siltation fencing and temporary block and sediment barriers at. In preparation of these provisions, reference was made to the <u>New Hampshire</u> Stormwater Manual; Volume 3: Erosion and Sediment Temporary Controls During Construction. Construction details for each temporary erosion control measure and practice specified have been added to the project plans. These plans also contain a number of erosion control notes, which are offered to the selected contractor in order to supplement the specified measures and practices to the extent practical.

B. Construction Sequence


A site-specific construction sequence sensitive to limiting soil loss due to erosion and associated water quality degradation was prepared specifically for this project and is shown on the project plans. As pointed out in the erosion control notes, it is important for the contractor to recognize that proper judgment in the implementation of work will be essential if erosion is to be limited and protection of completed work is to be realized. Moreover, any specific changes in sequence and/or field conditions affecting the ability of specific erosion control measures to adequately serve their intended purpose should be reported to this office by the contractor. Further, the contractor is encouraged to supplement specified erosion control measures during the construction period where and when in his/ her best judgment additional protection is warranted.

C. Permanent Erosion Control Measures


In the design of this site, consideration was given to limiting the potential for long-term erosion of completed improvements. As a result, several permanent erosion control measures were incorporated into the site design. These provisions include:

- Specification of a turf establishment schedule and seed mixture, utilizing materials and workmanship recognized as appropriate for the site conditions at hand; and
 Bituminaue payod partiag later and
- 2) Bituminous paved parking lots; and
- 3) Construction of rip-rap at the outlet of the stormwater management areas; and
- **4)** Four bioretention ponds and a subsurface detention system were designed to reduce runoff rates.

8. SURFACE WATER IMPAIRMENTS

9. SCREENING LAYERS

10. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY LETTER

To: Audrey Carr 10 Commerce Park North Bedford, NH 03110

From: NH Natural Heritage Bureau

Date: 9/27/2022 (This letter is valid through 9/27/2023)

Re: Review by NH Natural Heritage Bureau of request dated 9/27/2022

Permit Types: Wetland Standard Dredge & Fill - Minor General Permit

NHB ID: NHB22-3156

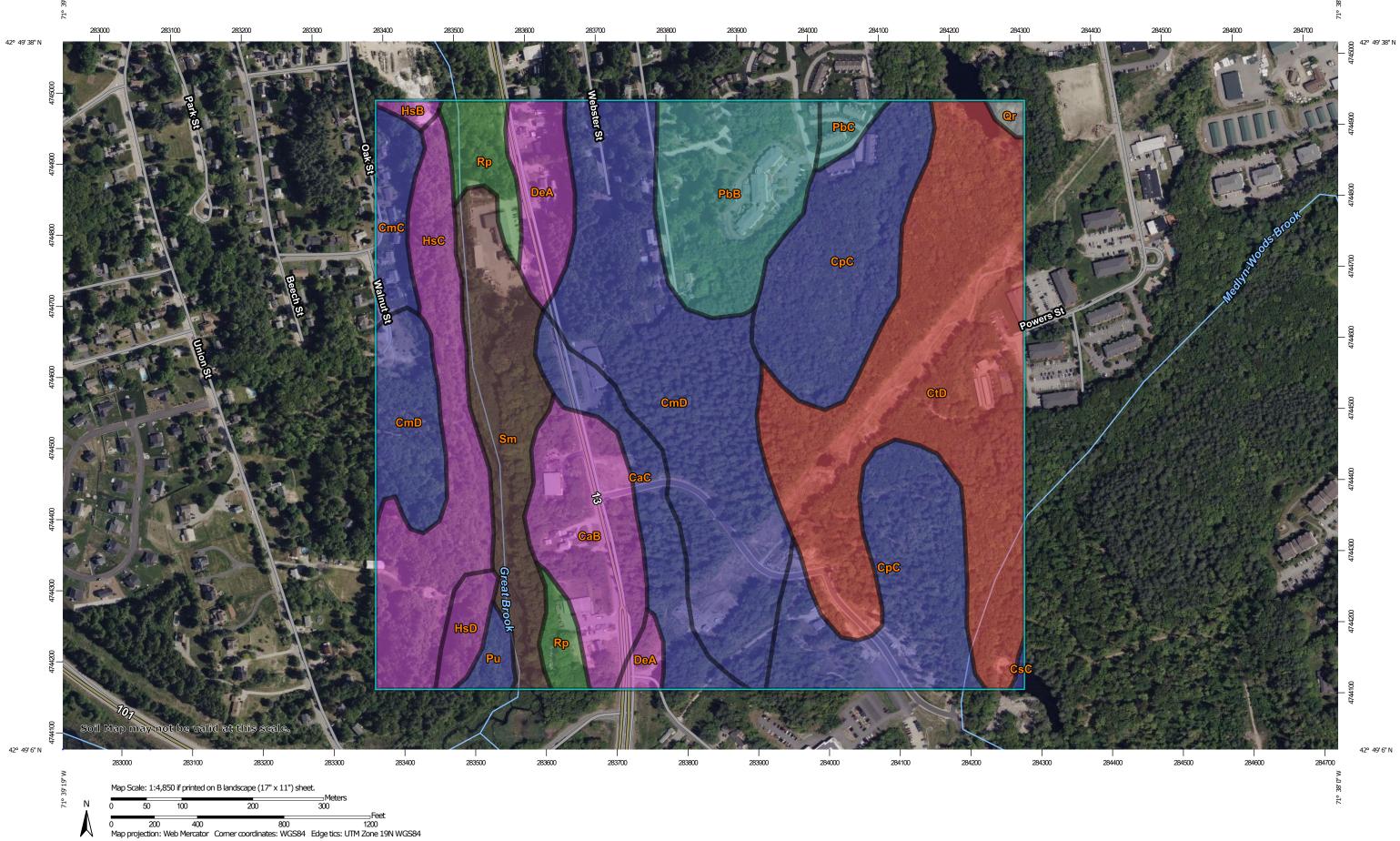
Applicant: Audrey Carr

Location: Milford Tax Map: 43, Tax Lot: 20-2 Address: South St

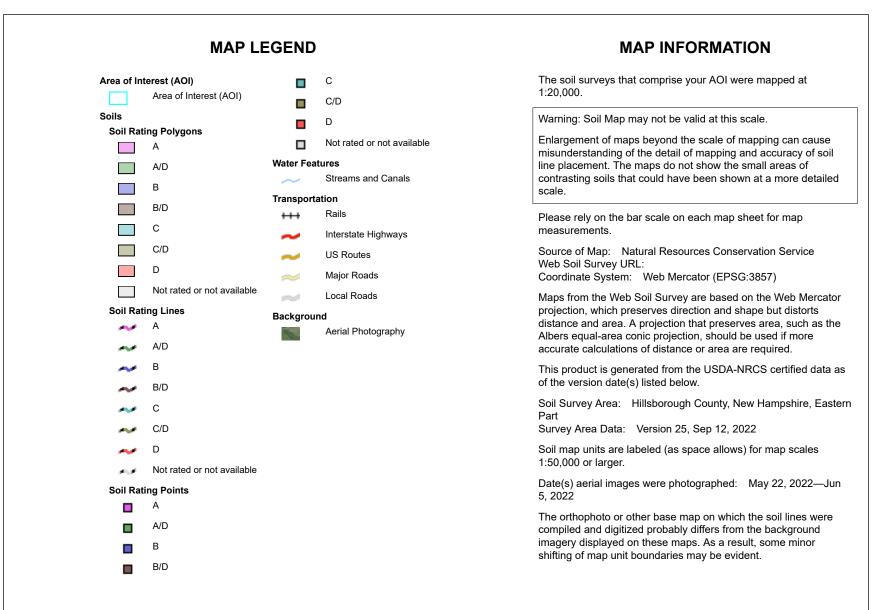
Proj. Description: The project proposes a gas station with convenience store

The NH Natural Heritage database has been checked for records of rare species and exemplary natural communities near the area mapped below. The species considered include those listed as Threatened or Endangered by either the state of New Hampshire or the federal government. We currently have no recorded occurrences for sensitive species near this project area.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.


Based on the information submitted, no further consultation with the NH Fish and Game Department pursuant to Fis 1004 is required.

MAP OF PROJECT BOUNDARIES FOR: NHB22-3156


11. WEB SOIL SURVEY

USDA

11/17/2022 Page 1 of 4

Hydrologic Soil Group-Hillsborough County, New Hampshire, Eastern Part

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
СаВ	Canton fine sandy loam, 0 to 8 percent slopes	A	11.4	6.0%
CaC	Canton fine sandy loam, 8 to 15 percent slopes	В	7.8	4.2%
CmC	Canton fine sandy loam, 8 to 15 percent slopes, very stony	В	3.8	2.0%
CmD	Canton fine sandy loam, 15 to 25 percent slopes, very stony	В	37.0	19.6%
СрС	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes	В	30.8	16.4%
CsC	Chatfield-Hollis complex, 8 to 15 percent slopes, rocky	В	0.2	0.1%
CtD	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	D	38.3	20.3%
DeA	Deerfield loamy fine sand, 0 to 3 percent slopes	A	6.3	3.3%
HsB	Hinckley loamy sand, 3 to 8 percent slopes	A	0.6	0.3%
HsC	Hinckley loamy sand, 8 to 15 percent slopes	A	14.8	7.9%
HsD	Hinckley loamy sand, 15 to 35 percent slopes	A	2.1	1.1%
PbB	Paxton fine sandy loam, 3 to 8 percent slopes	С	14.1	7.5%
PbC	Paxton fine sandy loam, 8 to 15 percent slopes	С	1.4	0.8%
Pu	Pootatuck fine sandy loam	В	1.3	0.7%
Qr	Quarries		0.5	0.3%
Rp	Rippowam fine sandy loam	A/D	5.3	2.8%
Sm	Saco variant silt loam	B/D	12.7	6.7%
Totals for Area of Inter	rest		188.4	100.0%

Description

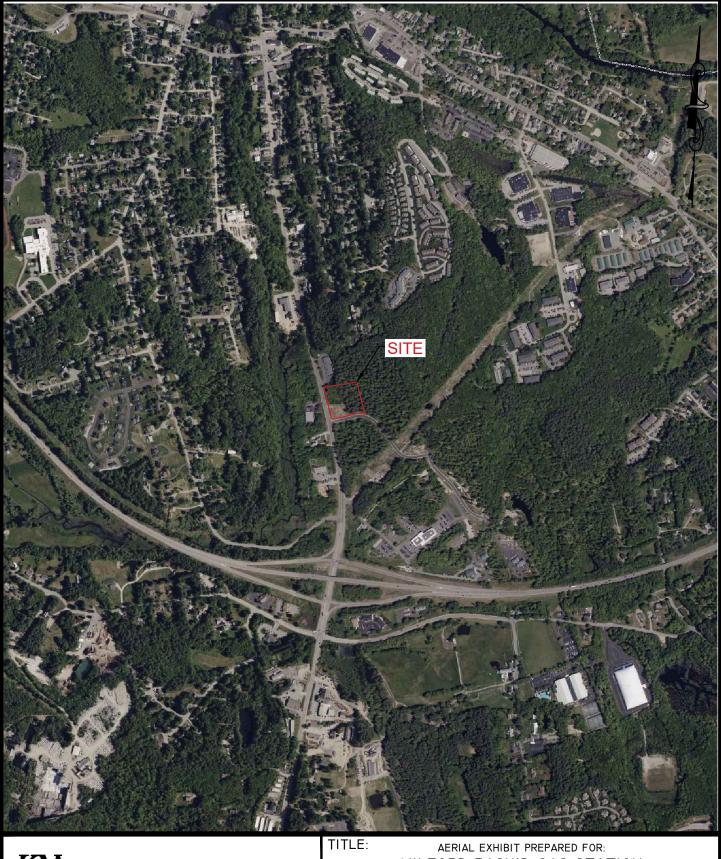
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

12. AERIAL

Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 AERIAL EXHIBIT PREPARED FOR: MILFORD RASHID GAS STATION MAP 43; LOT 20-2 SOUTH STREET - MILFORD, NEW HAMPSHIRE DATE: 02-19-2024

DATE. 02-19-2024	JUB. NO. 21-0320-1A
SCALE: I" = 1000'	SHEET I OF I

13. SITE PHOTOGRAPHS

Photo No. 1: Looking South, along South Street, project site on the left.

Photo No. 2: Looking North, along South Street, project site on the right.

Civil Engineering	Land Surveying	Landso	Landscape Architecture	
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915	

<u>Photo No. 3:</u> Looking East at the property.

Photo No. 4: Looking Northeast toward the area of stormwater discharge.

Civil Engineering	Land Surveying	Lands	cape Architecture
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915

14. BMP WORKSHEETS

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

	-	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	7(a).
0.85	-	A = Area draining to the practice	
0.16	ас	A ₁ = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
	ac-in	WQV= 1" x Rv x A	
677	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
169	-	25% x WQV (check calc for sediment forebay volume)	
508	-	75% x WQV (check calc for surface sand filter volume)	
	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
765		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	me to drain	i if system IS underdrained:	
293.50	ft	E _{wQV} = Elevation of WQV (attach stage-storage table)	
0.14	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
2.69	hours	T_{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
290.50	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
289.50	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
295.00	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
293.00	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
1.00	feet	$D_{FC to UD}$ = Depth to UD from the bottom of the filter course	<u>></u> 1'
(2.50)	feet	D _{FC to ROCK} = Depth to bedrock from the bottom of the filter course	<u>></u> 1'
(4.50)	feet	D _{FC to SHWT} = Depth to SHWT from the bottom of the filter course	<u>></u> 1'
293.64	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
294.70	ft	Elevation of the top of the practice	
YES		50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface	sand filter	or underground sand filter is proposed:	
YES	ас	Drainage Area check.	< 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> 75%WQV
	inches	D _{FC} = Filter course thickness	18", or 24" if
	_		within GPA
Sheet		Note what sheet in the plan set contains the filter course specification.	
	Yes/No	Access grate provided?	← yes

If a biorete	ention are	a is proposed:	
YES	YES ac Drainage Area no larger than 5 ac?		
1,238	_cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV 18", or 24" if
18.0	inches	D _{FC} = Filter course thickness	within GPA
Sheet	t1	7 Note what sheet in the plan set contains the filter course specification	
3.0) :1	Pond side slopes	<u>> 3</u> :1
Sheet	t	9 Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement	is proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	I	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Bioretention Pond is to be lined with 30 mil impermeable liner.

NHDES Alteration of Terrain

Last Revised: January 2019

Stage-Discharge for Pond 2P: Bioretention Pond 1

				I	
Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
292.00 292.02	0.00 0.04	293.04 293.06	0.11 0.11	294.08 294.10	7.13 7.14
292.02	0.04	293.00	0.11	294.10	7.14
292.04	0.04	293.08	0.11	294.12	7.15
292.00	0.05	293.10	0.11	294.14	7.10
292.00	0.05	293.12	0.12	294.10	7.10
292.10	0.05	293.14	0.12	294.20	7.13
292.12	0.05	293.18	0.12	294.20	7.20
292.16	0.05	293.20	0.12	294.24	7.22
292.18	0.05	293.22	0.12	294.26	7.23
292.20	0.06	293.24	0.12	294.28	7.24
292.22	0.06	293.26	0.12	294.30	7.26
292.24	0.06	293.28	0.13	294.32	7.27
292.26	0.06	293.30	0.13	294.34	7.28
292.28	0.06	293.32	0.13	294.36	7.29
292.30	0.06	293.34	0.13	294.38	7.30
292.32	0.07	293.36	0.13	294.40	7.31
292.34	0.07	293.38	0.13	294.42	7.32
292.36	0.07	293.40	0.13	294.44	7.33
292.38	0.07	293.42	0.13	294.46	7.35
292.40	0.07	293.44	0.14	294.48	7.36
292.42	0.07	293.46	0.14	294.50	7.37
292.44	0.08	293.48	0.14	294.52	7.38
292.46	0.08	293.50	0.14 0.21	294.54	7.39
292.48 292.50	0.08 0.08	293.52 293.54	0.21 0.35	294.56 294.58	7.40 7.41
292.50	0.08	293.54	0.53	294.58	7.41
292.52	0.08	293.58	0.33	294.62	7.42
292.56	0.08	293.60	0.97	294.64	7.44
292.58	0.08	293.62	1.23	294.66	7.46
292.60	0.09	293.64	1.52	294.68	7.47
292.62	0.09	293.66	1.82	294.70	7.48
292.64	0.09	293.68	2.15		
292.66	0.09	293.70	2.49		
292.68	0.09	293.72	2.85		
292.70	0.09	293.74	3.23		
292.72	0.09	293.76	3.62		
292.74	0.09	293.78	4.03		
292.76	0.09	293.80	4.46		
292.78	0.10	293.82	4.90		
292.80	0.10	293.84	5.35		
292.82	0.10	293.86	5.81		
292.84	0.10	293.88	6.29		
292.86	0.10 0.10	293.90	6.78		
292.88		293.92	7.04		
292.90 292.92	0.10 0.10	293.94 293.96	7.05 7.06		
292.92	0.10	293.90	7.00		
292.94	0.11	293.98	7.07		
292.98	0.11	294.00	7.10		
293.00	0.11	294.02	7.10		
293.02	0.11	294.06	7.12		

Stage-Area-Storage for Pond 2P: Bioretention Pond 1

(feet) (sq-ft) (cubic-feet) (feet) (sq-ft) 292.00 599 0 294.60 3,005 292.05 647 31 294.65 3,005 292.10 697 65 294.70 3,005 292.15 748 101 294.70 3,005 292.20 802 140 292.25 857 181	(cubic-feet) 4,497 4,497 4,497
292.0564731294.653,005292.1069765294.703,005292.15748101292.20802140292.25857181101101	4,497
292.1069765294.703,005292.15748101292.20802140292.25857181	
292.1069765294.703,005292.15748101292.20802140292.25857181	
292.15 748 101 292.20 802 140 292.25 857 181	
292.20 802 140 292.25 857 181	
292.25 857 181	
292.30 914 225	
292.35 973 272	
292.40 1,034 323	
292.45 1,097 376	
292.50 1,161 432	
292.55 1,199 491	
292.60 1,238 552	
292.65 1,277 615	
292.70 1,317 680	
292.75 1,357 747	
,	
292.95 1,525 1,035	
293.00 1,569 1,112	
293.05 1,610 1,192	
293.10 1,652 1,273	
293.15 1,694 1,357	
293.20 1,737 1,443	
293.25 1,780 1,531	
293.30 1,824 1,621	
293.35 1,868 1,713	
293.40 1,913 1,807	
293.45 1,958 1,904	
293.50 2,004 2,003	
293.55 2,050 2,105	
293.60 2,097 2,208	
293.65 2,145 2,314	
293.70 2,193 2,423	
293.75 2,241 2,534	
293.80 2,290 2,647	
293.85 2,340 2,763	
293.90 2,390 2,881	
293.95 2,441 3,002	
294.00 2,492 3,125	
294.05 2,541 3,251	
294.10 2,591 3,379	
294.15 2,641 3,510	
294.20 2,691 3,643	
294.25 2,743 3,779	
294.30 2,794 3,918	
294.35 2,846 4,059	
294.40 2,899 4,202	
294.45 2,952 4,348	
294.50 3,005 4,497	
294.55 3,005 4,497	

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #2

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

0.57 acA = Area draining to the practice0.41 acA = Impervious area draining to the practice0.42 actionalI = Percent impervious area draining to the practice, in decimal form0.70 unitiesRx = Runoff coefficient = 0.05 × (0.9 x I)0.40 ac-inWQV = 1" x R x A1.432 ofCf1.433 of25% x WQV (check calc for sufface sand filter volume)1.082 of75% x WQV (check calc for sufface sand filter volume)1.082 of75% x WQV (check calc for sufface sand filter volume)1.082 of75% x WQV (check calc for sufface sand filter volume)1.082 of75% x WQV (check calc for sufface sand filter volume)1.082 of75% x WQV (check calc for sufface sand filter volume)1.082 ofVge = Sediment forebay volume, if used for pretreatment2.25%WQVCalculate time to drain if system IS NOT underdrained: if Ksat (prior to factor of safety) is <0.50 iph, has an underdrain been provided? Yes/NoYes/No(Use the calculations below)- hoursT peAm = Drain time = 2/ (Ag.* * 1peach)2.612 of theElevation of WQV (attach stage-discharge table)0.14 0.14 0.14Cf0.250 0 feetElevation of the bottom of the filter course material2.87.50 0 feetElevation of bedrock (if none found, enter the lowest elevation of the test pit)2.88.00 0 feetElevation of bedrock (if none found, enter the lowest elevation of the test pit)2.89.00 0 feetElevation of the bottom of the filter course 0 filter course2.1			Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.02	7(a).
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.57	ac		
0.70unitless WQV= 1" × Rv x A1.443of1.443of1.443of1.443of1.443of2.5% x WQV (check calc for sediment forebay volume)1.082of2.5% x WQV (check calc for surface sand filter volume)ForebayMethod of Pretreatment? (not required for clean or roof runoff)593ofV _{SED} = Sediment forebay volume, if used for pretreatment2.5% WQVCalculate time to drain if system IS NOT underdrained:sfA _{SA} = Surface area of the practiceiphKsat _{rostow} = Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.41	ac	A ₁ = Impervious area draining to the practice	
0.40ac-inWQV = 1" x Rv x A1.443cfWQV conversion (ac-in x 43,560 sf/ac x 1fr/12")361cf25% x WQV (check calc for sediment forebay volume)1.082cf75% x WQV (check calc for surface sand filter volume)ForebayMethod of Pretreatment? (not required for clean or roof runoff)593cfV _{SED} = Sediment forebay volume, if used for pretreatment25% WQVStab = Surface area of the praticesfAs,a = Surface area of the praticeiphKsat (prior to factor of safety) is < 0.50 lph, has an underdrain been provided?	0.72	decimal	I = Percent impervious area draining to the practice, in decimal form	
1.443cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")361cf25% x WQV (check calc for sediment forebay volume)1.082cf75% x WQV (check calc for surface sand filter volume)ForebayMethod of Pretreatment? (not required for clean or roof runoff)593cfV _{SED} = Sediment forebay volume, if used for pretreatment25% WQVCalculate time to drain if system IS NOT underdrained:sf A_{sA} = Surface area of the practiceiphKsat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.70	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
361 cf25% x WQV (check calc for sediment forebay volume)1.082 cf75% x WQV (check calc for surface sand filter volume)Forebay ForebayMethod of Pretreatment? (not required for clean or roof runoff)593 cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained: iphsf A_{SA} = Surface area of the practiceiphKsat_besiden = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? Yes/No(Use the calculations below)•hoursT_brain = Drain time = V / (A_{SA} * 1_{DESGN}) \leq 72-hrsCalculate time to drain if system IS underdrained: 290.65 ftEway = Elevation of WQV (attach stage-storage table) $<$ 0.14 cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)0.14 288.05 6 feetFer E_up = Invert elevation of the underdrain (UD), if applicable $<$ 286.50 feet F_{ec} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)288.00 1.00 290.00 feetEncode = Depth to UD from the bottom of the filter course \geq 1'290.87 291.50 1.00feet Encode = Depth to UD from the bottom of the filter course \geq 1'290.87 291.50 1.50 291.50feet Encode = Depth to SHWT from the bottom of the filter course \geq 1'290.87 291.50Feet Depth to SHWT from the bottom of the filter course \geq 1'290.87 291.50Feet Depth to SHWT from the bottom of the filter course \geq 1'290.87 291.50	0.40	ac-in	WQV= 1" x Rv x A	
1,082 Cf75% x WQV (check calc for surface sand filter volume) Forebay Method of Pretreatment? (not required for clean or roof runoff)593cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained: iphsf A_{SA} = Surface area of the practice iphif ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? Yes/No (Use the calculations below) \leq 72-hrsCalculate time to drain if system IS underdrained: 290.65 ftEwquy = Elevation of WQV (attach stage-storage table) \leq 72-hrsCalculate time to drain if system IS underdrained: 290.65 0.14 cfsQwquy = Discharge at the Ewquy (attach stage-storage table) $<$ 72-hrs287.50 288.50 feetErc = Elevation of the bottom of the filter course material2 286.50 feetEvquy = Discharge at the Ewquy (attach stage-discharge table) $<$ 72-hrs287.50 288.00 feetEvgu = Drevt elevation of SHWT (if none found, enter the lowest elevation of the test pit) $<$ 72-hrs288.00 (feetEvgu = Depth to UD from the bottom of the filter course to sum = Depth to UD from the bottom of the filter course to sum = Depth to SHWT from the bottom of the filter course to sum = 21'20.01 290.87 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) 291.50 291.50 $<$ 10 ac 275/WQV290.87 41Peak elevation of the 50-year storm event (infiltration can be used in analysis) 291.50 291.50 $<$ 10 ac 275/WQV290.87 41Peak elevation of the 50-year storm event (infiltration can be used in analysis) <br< td=""><td>1,443</td><td>cf</td><td>WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")</td><td></td></br<>	1,443	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
ForebayMethod of Pretreatment? (not required for clean or roof runoff)593cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained:sf A_{SA} = Surface area of the practiceiphKsat_Dission = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	361	cf	25% x WQV (check calc for sediment forebay volume)	
593cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained:sf A_{AA} = Surface area of the practiceiphKsat_breston = Design infiltration rate ¹ iphKsat_breston = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	1,082	cf	75% x WQV (check calc for surface sand filter volume)	
Calculate time to drain if system IS NOT underdrained:	Fore	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
sfA _{SA} = Surface area of the practiceiphKsat_DESIGN = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	593	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
iphKsat _{Dessign} = Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? Yes/No(Use the calculations below)•hoursT_DRAIN = Drain time = V / (A _{5A} * I _{DESIGN}) \leq 72-hrsCalculate time to drain if system IS underdrained: 290.65 ftEwave Elevation of WQV (attach stage-storage table) $0.14 cfsQWQV = Discharge at the EWQV (attach stage-discharge table)< 72-hrs287.50 feetErc = Elevation of the bottom of the filter course material2< 72-hrs287.50 feetErc = Elevation of the outderdrain (UD), if applicable< 72-hrs287.50 feetErc = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)< 80.00 feet290.00 feetESHWT = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)< 10.00 feet1.00 feetDFC to DD = Depth to UD from the bottom of the filter course< 1'(0.50) feetDFC to DD = Depth to SHWT from the bottom of the filter course< 1'290.87 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50 ftElevation of the top of the practice< yesYESS0 peak elevation < Elevation of the top of the practice< yesYESacDrainage Area check.< 10 accfV = Volume of storage3 (attach a stage-storage table)< 75%WQVYESacDrainage Area check.< 10 accfV = Volume of storage3 (attach a stage-storage table)< 75%WQVinches<$	Calculate ti	me to drain	if system IS NOT underdrained:	
If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? (Use the calculations below)• hoursT DRAIN= Drain time = V / ($A_{SA} * I_{DESIGN}$) \leq 72-hrsCalculate time to drain if system IS underdrained: 290.65 ftElevation of WQV (attach stage-storage table) $0.14cfsQ_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)5.73hoursT DRAINT DRAIN< 72-hrs287.50feetE_{FC} = Elevation of the bottom of the filter course material2286.50feetE_{UD} = Invert elevation of bedrock (if none found, enter the lowest elevation of the test pit)288.00feetE_{SHWT} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{FC to UD} = Depth to UD from the bottom of the filter course< 1^1(0.50)feetDepth to SHWT from the bottom of the filter course< 1^1290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50ftElevation of the top of the practiceYESSD peak elevation ≤ at course and filter is proposed:YESacDrainage Area check.< 10 accfV = Volume of storage3 (attach a stage-storage table)> 75\%WQVMathin GPASheetNote what sheet in the plan set contains the filter course specification.$		sf	A _{SA} = Surface area of the practice	
If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? (Use the calculations below)• hoursT DRAIN= Drain time = V / ($A_{SA} * I_{DESIGN}$) \leq 72-hrsCalculate time to drain if system IS underdrained: 290.65 ftElevation of WQV (attach stage-storage table) $0.14cfsQ_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)5.73hoursT DRAINT DRAIN< 72-hrs287.50feetE_{rc} = Elevation of the bottom of the filter course material2286.50feetE_{uD} = Invert elevation of bedrock (if none found, enter the lowest elevation of the test pit)288.00feetE_{ancx} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{Fc to UD} = Depth to UD from the bottom of the filter course< 1'(0.50)feetDepth to SHWT from the bottom of the filter course< 1'290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)< 1'291.50ftElevation of the top of the practice< yesYESso peak elevation < Elevation of the top of the practice< yesIf a surface sand filter or underground sand filter is proposed:< 72-krs290.61C_{rc} = Filter course thickness< 10 ac< 0< 72-krs< 10 ac< 0< 72-krs< 10 ac< 10 ac< 72-krs< 10 ac< 10 ac< 10 ac< 72-krs< $		iph	Ksat _{DESIGN} = Design infiltration rate ¹	
• hoursTT </td <td></td> <td>-</td> <td>If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?</td> <td></td>		-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
Calculate time to drain if system IS underdrained: 290.65 ft E_{WQV} = Elevation of WQV (attach stage-storage table) 0.14 cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) 5.73 hours T DRAIN = Drain time = 2WQV/Q_{WQV} \leq 72-hrs 287.50 feet E_{FC} = Elevation of the bottom of the filter course material ² 286.50 feet E_{UD} = Invert elevation of SHWT (if none found, enter the lowest elevation of the test pit) 288.00 feet E_{SHWT} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit) 288.00 feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1' (0.50) feet $D_{FC to DED}$ = Depth to SHWT from the bottom of the filter course \geq 1' (2.50) feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course \geq 1' 290.87 ft Peak elevation of the top of the practice \leq yes YES 50 peak elevation \leq Elevation of the top of the practice $<$ yes If a surface sand filter or underground sand filter is proposed: $<$ 10 ac $<$ 75%WQV inches D_{FC} = Filter course thickness $<$ 10 ac $<$ 75%WQV<		Yes/No	(Use the calculations below)	
290.65ft E_{WQV} = Elevation of WQV (attach stage-storage table)0.14cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)5.73hours T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ 287.50feet E_{rc} = Elevation of the bottom of the filter course material ² 286.50feet E_{UD} = Invert elevation of the underdrain (UD), if applicable290.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)288.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course21'(0.50)feet $D_{FC to NOCK}$ = Depth to bedrock from the bottom of the filter course21'(2.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course21'290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50ftElevation of the top of the practiceYES50 peak elevation < Elevation of the top of the practice	-	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
0.14cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)5.73hoursT $_{DRAIN}$ = Drain time = $2WQV/Q_{WQV}$ \leq 72-hrs287.50feet E_{FC} = Elevation of the bottom of the filter course material ² 286.50feet E_{UD} = Invert elevation of the underdrain (UD), if applicable290.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)288.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1'(0.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course \geq 1'(2.50)feet $D_{FC to ROCK}$ = Depth to SHWT from the bottom of the filter course \geq 1'290.87ftPeak elevation of the top of the practice \leq yesYES50 peak elevation \leq Elevation of the top of the practice $<$ yesYESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75%WQVinches D_{FC} = Filter course thickness $uithin GPA$ SheetNote what sheet in the plan set contains the filter course specification.	Calculate ti	me to drain	if system IS underdrained:	
5.73 hours T DRAIN = Drain time = $2WQV/Q_{WQV}$ \leq 72-hrs 287.50 feet E_{FC} = Elevation of the bottom of the filter course material ² 286.50 feet E_{UD} = Invert elevation of the underdrain (UD), if applicable 290.00 feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit) 288.00 feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit) 1.00 feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1' (0.50) feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course \geq 1' (2.50) feet $D_{FC to ROCK}$ = Depth to SHWT from the bottom of the filter course \geq 1' 290.87 ft Peak elevation of the top of the practice \leq yes If a surface sand filter or underground sand filter is proposed: \langle 10 ac \langle 75%WQV YES ac Drainage Area check. \langle 10 ac \langle Cf V = Volume of storage ³ (attach a stage-storage table) \geq 75%WQV inches D_{FC} = Filter course thickness $WHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	290.65	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
287.50feet $E_{FC} = Elevation of the bottom of the filter course material^2286.50feetE_{UD} = Invert elevation of the underdrain (UD), if applicable290.00feetE_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)288.00feetE_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{FC to UD} = Depth to UD from the bottom of the filter course21'(0.50)feetD_{FC to ROCK} = Depth to bedrock from the bottom of the filter course21'(2.50)feetD_{FC to SHWT} = Depth to SHWT from the bottom of the filter course290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50ftElevation of the top of the practiceYES50 peak elevation ≤ Elevation of the top of the practiceYESacDrainage Area check.cfV = Volume of storage3 (attach a stage-storage table)2FC = Filter course thickness2FSWQVinchesD_{FC} = Filter course thicknessNote what sheet in the plan set contains the filter course specification.$	0.14	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
286.50feet E_{UD} = Invert elevation of the underdrain (UD), if applicable290.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)288.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1'(0.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course \geq 1'(2.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course \geq 1'290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50ftElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \geq 75%WQVvESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75%WQVinches D_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	5.73	hours	T_{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
290.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)288.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ (0.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ (2.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50291.50ftElevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \vee ESacDrainage Area check. < 10 acVESacDrainage Area check. < 10 ac $\geq 75\% WQV$ inches D_{FC} = Filter course thickness $18"$, or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	287.50	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
288.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ (0.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ (2.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 291.50ftElevation of the top of the practice \leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: $< 10 \text{ ac}$ YESacDrainage Area check. $< 10 \text{ ac}$ cfV = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches D_{FC} = Filter course thickness $18"$, or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	286.50	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ (0.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ (2.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 291.50ftElevation of the top of the practice \leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: $< 10 \text{ ac}$ cf V = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches D_{FC} = Filter course thickness $18"$, or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	290.00		E = Elevation of SHWT (if none found enter the lowest elevation of the test n	
(0.50)feet $D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course\geq 1'(2.50)feetD_{FC to SHWT} = Depth to SHWT from the bottom of the filter course\geq 1'290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)\geq 1'291.50ftElevation of the top of the practice\leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice\leftarrow yesIf a surface sand filter or underground sand filter is proposed:< 10 ac\downarrow CfV = Volume of storage3 (attach a stage-storage table)\geq 75\%WQVinchesD_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.$	-	feet	L _{SHWT} – Lievation of Shiver (in none found, enter the lowest elevation of the test p	it)
(2.50)feet $D_{FC \text{ to SHWT}} = \text{Depth to SHWT from the bottom of the filter course}\geq 1'290.87ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50ftElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practice\leftarrow yesIf a surface sand filter or underground sand filter is proposed:< 10 \text{ ac}YESacDrainage Area check.< 10 \text{ ac}cfV = Volume of storage3 (attach a stage-storage table)\geq 75\%WQVinchesD_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.$		-		
290.87 291.50 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)291.50 FtElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYESacDrainage Area check.< 10 ac	288.00	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
291.50 ft Elevation of the top of the practice YES 50 peak elevation \leq Elevation of the top of the practice \leftarrow yes If a surface sand filter or underground sand filter is proposed: \vee $<$ 10 ac YES ac Drainage Area check. $<$ 10 ac cf V = Volume of storage ³ (attach a stage-storage table) \geq 75% WQV inches D _{FC} = Filter course thickness 18", or 24" if within GPA Sheet Note what sheet in the plan set contains the filter course specification.	288.00 1.00	feet feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course	pit) ≥ 1'
YES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \vee 210 acYESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75%WQVinchesD _{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification. \vee	288.00 1.00 (0.50)	feet feet feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	pit) ≥ 1' ≥ 1'
If a surface sand filter or underground sand filter is proposed: < 10 ac	288.00 1.00 (0.50) (2.50)	feet feet feet feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course	pit) ≥ 1' ≥ 1'
YESacDrainage Area check.< 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75% WQVinchesD _{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	288.00 1.00 (0.50) (2.50) 290.87	feet feet feet feet ft	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	pit) ≥ 1' ≥ 1'
cfV = Volume of storage³ (attach a stage-storage table) \geq 75%WQVinchesDFC = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	288.00 1.00 (0.50) (2.50) 290.87 291.50 YES	feet feet feet ft ft	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <u><</u> Elevation of the top of the practice	pit) ≥ 1' ≥ 1' ≥ 1'
inchesDFC = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	288.00 1.00 (0.50) (2.50) 290.87 291.50 YES If a surface	feet feet feet ft ft	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <u><</u> Elevation of the top of the practice or underground sand filter is proposed:	pit) ≥ 1' ≥ 1' ≥ 1' ← yes
inches D _{FC} = Filter course thickness within GPA Sheet Note what sheet in the plan set contains the filter course specification.	288.00 1.00 (0.50) (2.50) 290.87 291.50 YES If a surface	feet feet feet ft ft sand filter ac	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	pit) ≥ 1' ≥ 1' ≥ 1' ← yes
	288.00 1.00 (0.50) (2.50) 290.87 291.50 YES If a surface	feet feet feet ft ft sand filter ac	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
Yes/No Access grate provided?	288.00 1.00 (0.50) (2.50) 290.87 291.50 YES If a surface	feet feet feet ft ft sand filter ac cf	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
	288.00 1.00 (0.50) (2.50) 290.87 291.50 YES If a surface YES	feet feet feet ft ft sand filter ac cf inches	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <u><</u> Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a biorete	ention are	a is proposed:	
YES	YES ac Drainage Area no larger than 5 ac?		
1,530	_cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV 18", or 24" if
18.0	inches	D _{FC} = Filter course thickness	within GPA
Sheet	t1	7 Note what sheet in the plan set contains the filter course specification	
3.0) :1	Pond side slopes	<u>> 3</u> :1
Sheet	t	9 Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement	is proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	t	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Bioretention Pond is to be lined with 30 mil impermeable liner.

NHDES Alteration of Terrain

Last Revised: January 2019

Stage-Discharge for Pond 3P: Bioretention Pond 2

Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
289.00	0.00	290.04	0.10	291.08	7.38
289.02	0.04	290.06	0.10	291.10	7.40
289.04	0.04	290.08	0.10	291.12	7.42
289.06	0.05	290.10	0.11	291.14	7.44
289.08 289.10	0.05 0.05	290.12 290.14	0.11 0.11	291.16 291.18	7.46 7.47
289.10	0.05	290.14	0.11	291.10	7.49
289.14	0.05	290.18	0.11	291.22	7.51
289.16	0.05	290.20	0.11	291.24	7.53
289.18	0.05	290.22	0.11	291.26	7.55
289.20	0.05	290.24	0.11	291.28	7.56
289.22	0.05	290.26	0.11 0.12	291.30	7.58
289.24 289.26	0.06 0.06	290.28 290.30	0.12	291.32 291.34	7.60 7.62
289.28	0.06	290.32	0.12	291.36	7.63
289.30	0.06	290.34	0.12	291.38	7.65
289.32	0.06	290.36	0.12	291.40	7.67
289.34	0.06	290.38	0.12	291.42	7.69
289.36	0.06	290.40	0.12	291.44	7.70
289.38 289.40	0.06 0.06	290.42 290.44	0.12 0.12	291.46 291.48	7.72 7.74
289.40	0.00	290.44	0.12	291.40	7.74
289.44	0.07	290.48	0.13	201.00	
289.46	0.07	290.50	0.13		
289.48	0.07	290.52	0.13		
289.50	0.07	290.54	0.13		
289.52 289.54	0.07 0.07	290.56 290.58	0.13 0.13		
289.54	0.07	290.58	0.13		
289.58	0.08	290.62	0.13		
289.60	0.08	<mark>290.64</mark>	0.14		
289.62	0.08	290.66	0.16		
289.64	0.08	290.68	0.27		
289.66 289.68	0.08 0.08	290.70 290.72	0.43 0.62		
289.70	0.08	290.72	0.85		
289.72	0.08	290.76	1.10		
289.74	0.08	290.78	1.37		
289.76	0.09	290.80	1.66		
289.78	0.09	290.82	1.98		
289.80 289.82	0.09 0.09	290.84 290.86	2.31 2.67		
289.82	0.09	290.88	3.03		
289.86	0.09	290.90	3.42		
289.88	0.09	290.92	3.82		
289.90	0.09	290.94	4.24		
289.92	0.10	290.96	4.67		
289.94	0.10	290.98	5.11		
289.96 289.98	0.10 0.10	291.00 291.02	5.57 6.04		
290.00	0.10	291.02	6.53		
290.02	0.10	291.06	7.02		

_

Stage-Area-Storage for Pond 3P: Bioretention Pond 2

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
(feet) 289.00 289.05 289.10 289.15 289.20 289.25 289.30 289.35 289.40 289.45 289.50 289.55 289.60 289.65 289.70 289.75 289.80 289.85 289.90 289.95 290.00 290.05 290.10 290.25 290.30 290.35 290.40 290.55 290.60	(sq-ft) 598 640 682 724 766 808 850 892 934 976 1,018 1,059 1,101 1,143 1,059 1,101 1,143 1,227 1,269 1,311 1,353 1,395 1,437 1,478 1,518 1,559 1,599 1,640 1,680 1,721 1,761 1,802 1,843 1,883 1,924	$\begin{array}{r} (\text{cubic-feet}) \\ 0 \\ 31 \\ 64 \\ 99 \\ 136 \\ 176 \\ 217 \\ 261 \\ 306 \\ 354 \\ 404 \\ 456 \\ 510 \\ 566 \\ 624 \\ 684 \\ 747 \\ 811 \\ 878 \\ 947 \\ 1,018 \\ 1,090 \\ 1,165 \\ 1,242 \\ 1,321 \\ 1,402 \\ 1,485 \\ 1,570 \\ 1,657 \\ 1,746 \\ 1,837 \\ 1,931 \\ 2,026 \end{array}$
290.65 290.70 290.75 290.80 290.85 290.90 290.95 291.00 291.05 291.10 291.15 291.20 291.25 291.30 291.35 291.40 291.45 291.50	1,964 2,005 2,045 2,086 2,126 2,167 2,207 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248 2,248	2,123 2,222 2,323 2,427 2,532 2,639 2,749 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860 2,860

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #3

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

0.56 aca + Area draining to the practice0.27 acacA = Impervious area draining to the practice, in decimal form0.48 decimalI = Percent impervious area draining to the practice, in decimal form0.48 decimalunitizes0.27 ac-inWQV = 1" x N × A984 cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")246 cf25% x WQV (check calc for sufface sand filter volume)75% ForebayMethod of Pretreatment? (not required for clean or roof runoff)265 cfVson = Sediment forebay volume, if used for pretreatment2 25%WQVCalculate time to drain if system IS NOT underdrained: sfsfsfAsa = Surface area of the practiceiphKsataccian = Design infiltration rate ¹ if Ksat (prior to factor of safety) is <0.50 iph, has an underdrain been provided? Ves/NoVes/No(Use the calculations below)< 72-hrs2.61culate time to drain f system IS underdrained: 293.35 ftEwory = Elevation of WQV (attach stage-storage table)0.07 cfsQwy = Discharge at the Ewory (attach stage-discharge table)7.08 289.50 feetEvc = Elevation of the bottom of the filter course accus = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)304.00 305.00 feetEvc = Depth to DB/HVT (if none found, enter the lowest elevation of the test pit)304.00 305.00 feetEvc = Depth to DB/HVT (fm one bottom of the filter course 21'21 305.01 feetDrc to acc = Elevation of the bottom of the filter course 21'305.01 feetDrc to acc			Check if you reviewed the restrictions on unlined systems outlined in Env-Wg 1508.02	7(a).
0.48decimal unitiessI = Percent impervious area draining to the practice, in decimal form0.48unitiessRv = Runoff coefficient = 0.05 + (0.9 x I) WQV = 1" x Rv x A984CfWQV conversion (ac-in x 43,560 sf/ac x 1fr/12")2246cf25% x WQV (check calc for sufface sand filter volume)738cf75% x WQV (check calc for sufface sand filter volume)738represent to a sufface area of the practice8represent forebayNethod of Petreatment? (not required for clean or roof runoff)265cfV _{sto} = Sufface area of the practice9iphKsat _{DESKON} = Design infiltration rate ¹ 10Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.56	ac		
0.48unitlessRv = Runoff coefficient = 0.05 + (0.9 x 1)0.27ac-inWQV = 1" x Rv x A984cfWQV conversion (ac-in x 43,560 sf/ac x 1fr/12")246cf25% x WQV (check calc for surface sand filter volume)738rf75% x WQV (check calc for surface sand filter volume)738cf25% x WQV (check calc for surface sand filter volume)ForebayMethod of Pretreatment? (not required for clean or roof runoff)265cfV _{SED} = Sediment forebay volume, if used for pretreatment25%WQVCalculate time to drain if system IS NOT underdrained:sfA _{ss} = Surface area of the practiceiphKsat _{DESON} = Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.27	- ac	A ₁ = Impervious area draining to the practice	
0.27ac-in 984WQV = 1" x Rv x A WQV conversion (ac-in x 43,560 sf/ac x 1fr/12")246cf25% x WQV (check calc for sediment forebay volume) 738 cf75% x WQV (check calc for sufface sand filter volume)738ForebayMethod of Pretreatment? (not required for clean or roof runoff) 	0.48	decimal	I = Percent impervious area draining to the practice, in decimal form	
984 cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")246 cf25% x WQV (check calc for sediment forebay volume) 75% x WQV (check calc for surface sand filter volume)738 cf75% x WQV (check calc for surface sand filter volume)75% robust75% x WQV (check calc for surface sand filter volume)75% calculate time to drain if system IS NOT underdrained: sf \geq 25%WQVCalculate time to drain if system IS NOT underdrained: if K stat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? Yes/No (Use the calculations below)• rboursrbours rbours• calculate time to drain if system IS underdrained: 293.35 ft293.35 ft 295.50feet Ev _x Elevation of WQV (attach stage-storage table) 0.07 cfs 0.007 cfs 0.007 velevation of the bottom of the filter course material² 288.50 feet289.50 feet at r_c Elevation of the underdrain (UD), if applicable 307.00 feet307.00 feet to feet to $r_{cto SOX} =$ Depth to bdrock (if none found, enter the lowest elevation of the test pit)304.00 feet 293.5710 feet 293.570 feet 293.5711 feet 293.5712 feet 293.5712 feet 293.5712 feet 293.5714 feat elevation of the top of the practice 205.50 50 peak elevation of the top of the practice 205.50 50 peak elevation of the practice 21' 235.5715 feat elevation of the practice 26 21' 235.5716 feet bric to storage 3 (attach a stage-storage table) 23.5717 feat bric to storage	0.48	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
246cf25% x WQV (check calc for sediment forebay volume)738cf75% x WQV (check calc for surface sand filter volume)ForebayMethod of Pretreatment? (not required for clean or roof runoff)265cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained:sf A_{SA} = Surface area of the practiceiphiphKsat _{DESIGN} = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.27	ac-in	WQV= 1" x Rv x A	
738 cf75% x WQV (check calc for surface sand filter volume)ForebayMethod of Pretreatment? (not required for clean or roof runoff)265 cf V_{scb} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained:sf A_{SA} = Surface area of the practiceiphKsat_orssow = Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	984	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
ForebayMethod of Pretreatment? (not required for clean or roof runoff)265cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained:sf A_{SA} = Surface area of the practiceiphKsat personDesign infiltration rate ¹ if K Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	246	cf	25% x WQV (check calc for sediment forebay volume)	
265cf V_{SED} = Sediment forebay volume, if used for pretreatment \geq 25%WQVCalculate time to drain if system IS NOT underdrained:sf A_{A} = Surface area of the practiceiphKsat_beston = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	738	cf		
Calculate time to drain if system IS NOT underfrained:	Fore	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
sfA _{SA} = Surface area of the practiceiphKsat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	265	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
iphKsat_DESIGN = Design infiltration rate1iphKsat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	Calculate ti	me to drain	if system IS NOT underdrained:	
If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? Yes/NoYes/No(Use the calculations below)•hoursT DRAIN = Drain time = V / (A_{SA} * I_{DESIGN}) \leq 72-hrsCalculate time to drain if system IS underdrained: 293.35 ftElevation of WQV (attach stage-storage table) $0.07 cfsQ_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)7.81 hoursT DRAIN = Drain time = 2WQV/Q_{WQV}289.50 feetE_{FC} = Elevation of the bottom of the filter course material2288.50 feetE_{UD} = Invert elevation of SHWT (if none found, enter the lowest elevation of the test pit)304.00 feetE_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00 feetDFC to JD = Depth to UD from the bottom of the filter course21'(14.50) feetDFC to GOK = Depth to bedrock from the bottom of the filter course21'(17.50) feetDFC to SHWT = Depth to SHWT from the bottom of the filter course21'293.57 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)293.57 ftPeak elevation of the top of the practiceYESSD peak elevation of end cold and filter is proposed:YESDrainage Area check.cfV = Volume of storage3 (attach a stage-storage table)27.55SD peak elevation of the top of the practiceYESDrainage Area check.cfV = Volume of storage3 (attach a stage-storage table)27.55SD peak elevation \leq Elevation of the$		sf	A _{SA} = Surface area of the practice	
Yes/No(Use the calculations below) \leq 72-hrsCalculate time to drain if system IS underdrained:293.35ft $E_{WQV} = Elevation of WQV (attach stage-storage table)0.07cfsQ_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)\leq 72-hrs289.50feetE_{rc} = Elevation of the bottom of the filter course material2\leq 72-hrs289.50feetE_{rc} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)304.00feetE_{sHWT} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{FC to UD} = Depth to UD from the bottom of the filter course21'(14.50)feetD_{FC to UD} = Depth to SHWT (if none the practice \leq 1'(17.50)feetD_{FC to ROCK} = Depth to bedrock from the bottom of the filter course \geq 1'293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)294.25ftElevation of the top of the practice \leq yesYES50 peak elevation ≤ Levation of the top of the practice \langle yesIf a surface sand filter or underground sand filter is proposed:\langle 10 acYESacDrainage Area check.cfV = Volume of storage3 (attach a stage-storage table)\rangle 75%WQVinchesD_{FC} = Filter course thicknessNote what sheet in the plan set contains the filter course specification.$		iph	Ksat _{DESIGN} = Design infiltration rate ¹	
• hours T DRAIN = Drain time = V / (A _{SA} * I _{DESIGN}) ≤ 72-hrs Calculate time to drain if system IS underdrained: 293.35 ft E _{WQV} = Elevation of WQV (attach stage-storage table) 0.07 cfs Q _{WQV} = Discharge at the E _{WQV} (attach stage-discharge table) 7.81 hours T DRAIN = Drain time = 2WQV/Q _{WQV} ≤ 72-hrs 289.50 feet E _{FC} = Elevation of the bottom of the filter course material ² 288.50 feet E _{UD} = Invert elevation of the underdrain (UD), if applicable 307.00 feet E _{MWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit) 304.00 feet D _{PC to UD} = Depth to UD from the bottom of the filter course ≥ 1' (14.50) feet D _{PC to ROCK} = Depth to Bedrock (if none the bottom of the filter course ≥ 1' (17.50) feet D _{PC to ROCK} = Depth to SHWT from the bottom of the filter course ≥ 1' 293.57 ft Peak elevation of the top of the practice Yes 50 peak elevation ≤ Elevation of the top of the practice ≤ yes If a surface sand filter or underground sand filter is proposed: YES ac Drainage Area check. < 10 ac		-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
Calculate time to drain if system IS underdrained: 293.35 ft E_{WQV} = Elevation of WQV (attach stage-storage table) 0.07 cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) 7.81 hours T DRAIN = Drain time = 2WQV/Q _{WQV} \leq 72-hrs 289.50 feet E_{FC} = Elevation of the bottom of the filter course material ² 288.50 feet E_{UD} = Invert elevation of the underdrain (UD), if applicable 307.00 feet E_{SHWT} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit) 304.00 feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1' (14.50) feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1' (17.50) feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course \geq 1' 293.57 ft Peak elevation of the top of the practice \leq yes If a surface sand filter or underground sand filter is proposed: \leq 10 ac \leq 75%WQV \leq 75%WQV inches D_{FC} = Filter course thickness \leq 75%WQV $i = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $		Yes/No	(Use the calculations below)	
Calculate time to drain if system IS underdrained: 293.35 ft E_{WQV} = Elevation of WQV (attach stage-storage table) 0.07 cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) 7.81 hours T DRAIN = Drain time = 2WQV/Q _{WQV} \leq 72-hrs 289.50 feet E_{FC} = Elevation of the bottom of the filter course material ² 288.50 feet E_{UD} = Invert elevation of the underdrain (UD), if applicable 307.00 feet E_{SHWT} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit) 304.00 feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1' (14.50) feet $D_{FC to UD}$ = Depth to bedrock from the bottom of the filter course \geq 1' (17.50) feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course \geq 1' 293.57 ft Peak elevation of the top of the practice \leq yes If a surface sand filter or underground sand filter is proposed: \leq 10 ac \leq 75%WQV YES ac Drainage Area check. < 10 ac	-	hours	T _{DRAIN} = Drain time = V / (A _{SA} * I _{DESIGN})	<u><</u> 72-hrs
0.07cfs Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)7.81hours T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ \leq 72-hrs289.50feet E_{FC} = Elevation of the bottom of the filter course material ² 288.50feet E_{UD} = Invert elevation of the underdrain (UD), if applicable307.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)304.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1'(14.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course \geq 1'(293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)294.25294.25ftElevation of the practice \leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \geq 75%WQVYESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75%WQVinches D_{FC} = Filter course thickness $uithin GPA$ SheetNote what sheet in the plan set contains the filter course specification.	Calculate ti	me to drain		
7.81hoursTTTPrain time = 2WQV/Q \leq 72-hrs289.50feet E_{FC} = Elevation of the bottom of the filter course material2288.50feet E_{UD} = Invert elevation of the underdrain (UD), if applicable307.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)304.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1'(14.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course \geq 1'(17.50)feet $D_{FC to BHWT}$ = Depth to SHWT from the bottom of the filter course \geq 1'293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)294.25294.25ftElevation of the top of the practice \leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \geq 75%WQVYESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75%WQVinches D_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	293.35	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
10001000100010001000289.50feet $E_{FC} = Elevation of the bottom of the filter course material^2288.50feetE_{UD} = Invert elevation of the underdrain (UD), if applicable307.00feetE_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)304.00feetE_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{FC to UD} = Depth to UD from the bottom of the filter course21'(14.50)feetD_{FC to ROCK} = Depth to bedrock from the bottom of the filter course21'(17.50)feetD_{FC to SHWT} = Depth to SHWT from the bottom of the filter course23.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)294.25ftElevation of the top of the practiceYES50 peak elevation ≤ Elevation of the top of the practiceYESacDrainage Area check.cfV = Volume of storage3 (attach a stage-storage table)inchesD_{FC} = Filter course thicknessSheetNote what sheet in the plan set contains the filter course specification.$	0.07	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
288.50feet E_{UD} = Invert elevation of the underdrain (UD), if applicable307.00feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)304.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course \geq 1'(14.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course \geq 1'(17.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course \geq 1'293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)294.25294.25ftElevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed:YESacDrainage Area check.< 10 ac	7.81	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
307.00 feet E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit) 304.00 feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit) 1.00 feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ (14.50) feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ (17.50) feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 293.57 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) ≥ 294.25 ft 294.25 ftElevation of the top of the practice \checkmark yesIf a surface sand filter or underground sand filter is proposed: \checkmark 10 ac YES acDrainage Area check. < 10 ac cf V = Volume of storage ³ (attach a stage-storage table) $\geq 75\% WQV$ $inches$ D_{FC} = Filter course thickness $18"$, or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	289.50	feet	E_{FC} = Elevation of the bottom of the filter course material ²	
304.00feet E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ (14.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ (17.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 294.25ftElevation of the top of the practice \checkmark yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: $<$ 10 ac \uparrow CfV = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches D_{FC} = Filter course thickness $18"$, or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	288.50	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
1.00feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ (14.50)feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ (17.50)feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 294.25ftElevation of the top of the practice \leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: $< 10 ac$ cfV = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches D_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	307.00		E - Elevation of SHWT (if none found onter the lowest elevation of the test n	
(14.50)feet $D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course\geq 1'(17.50)feetD_{FC to SHWT} = Depth to SHWT from the bottom of the filter course\geq 1'293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)\geq 1'294.25ftElevation of the top of the practice\leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice\leftarrow yesIf a surface sand filter or underground sand filter is proposed:< 10 accfV = Volume of storage3 (attach a stage-storage table)\geq 75\%WQVinchesD_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.$	507.00	feet	E _{SHWT} – Elevation of SHWT (in none found, enter the lowest elevation of the test p	it)
(17.50)feet $D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course\geq 1'293.57ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)294.25ftElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practice\leftarrow yesIf a surface sand filter or underground sand filter is proposed:\leftarrow 10 acYESacDrainage Area check.< 10 accfV = Volume of storage3 (attach a stage-storage table)\geq 75%WQVinchesD_{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.$		-		
293.57 294.25 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) 294.25 ftElevation of the top of the practice \leftarrow yesYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yes \leftarrow yesIf a surface sand filter or underground sand filter is proposed: Γ Drainage Area check. $<$ 10 ac \geq 75%WQV $=$ volume of storage ³ (attach a stage-storage table) \geq 75%WQV $=$ 18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.Note what sheet in the plan set contains the filter course specification.	304.00	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
294.25 ft Elevation of the top of the practice YES 50 peak elevation \leq Elevation of the top of the practice \leftarrow yes If a surface sand filter or underground sand filter is proposed: VES ac Drainage Area check. < 10 ac	304.00 1.00	feet feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course	pit) ≥ 1'
YES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed:VESacYESacDrainage Area check.< 10 ac	304.00 1.00 (14.50)	feet feet feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	pit) ≥ 1' ≥ 1'
If a surface sand filter or underground sand filter is proposed: YES ac Drainage Area check. < 10 ac	304.00 1.00 (14.50) (17.50)	feet feet feet feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course	pit) ≥ 1' ≥ 1'
YESacDrainage Area check.< 10 accfV = Volume of storage ³ (attach a stage-storage table) \geq 75%WQVinchesD _{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	304.00 1.00 (14.50) (17.50) 293.57	feet feet feet feet ft	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	pit) ≥ 1' ≥ 1'
cf V = Volume of storage ³ (attach a stage-storage table) > 75%WQV inches D _{FC} = Filter course thickness 18", or 24" if within GPA Sheet Note what sheet in the plan set contains the filter course specification.	304.00 1.00 (14.50) (17.50) 293.57 294.25 YES	feet feet feet feet ft ft	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <u><</u> Elevation of the top of the practice	pit) ≥ 1' ≥ 1' ≥ 1'
inchesDFC = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	304.00 1.00 (14.50) (17.50) 293.57 294.25 YES If a surface	feet feet feet feet ft ft	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <u><</u> Elevation of the top of the practice or underground sand filter is proposed:	pit) ≥ 1' ≥ 1' ≥ 1' ← yes
Inches D _{FC} = Filter course thickness within GPA Sheet Note what sheet in the plan set contains the filter course specification.	304.00 1.00 (14.50) (17.50) 293.57 294.25 YES If a surface	feet feet feet ft ft sand filter	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	pit) ≥ 1' ≥ 1' ≥ 1' ← yes
	304.00 1.00 (14.50) (17.50) 293.57 294.25 YES If a surface	feet feet feet ft ft sand filter ac	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
Yes/No Access grate provided? \leftarrow yes	304.00 1.00 (14.50) (17.50) 293.57 294.25 YES If a surface	feet feet feet ft ft sand filter ac cf	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
	304.00 1.00 (14.50) (17.50) 293.57 294.25 YES If a surface YES	feet feet feet ft ft sand filter ac cf inches	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a biorete	ention are	a is proposed:	
YES	ас	Drainage Area no larger than 5 ac?	← yes
1,328	_cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV 18", or 24" if
18.0	inches	D _{FC} = Filter course thickness	within GPA
Sheet	t1	7 Note what sheet in the plan set contains the filter course specification	
3.0) :1	Pond side slopes	<u>> 3</u> :1
Sheet	t	9 Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement	is proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	t	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Bioretention Pond is to be lined with 30 mil impermeable liner.

NHDES Alteration of Terrain

Last Revised: January 2019

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 5P: Bioretention Pond 3

	D .		D .		D ·		D :
Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary
291.00	0.00	292.04	0.03	293.08	0.06	294.12	(cfs) 12.51
291.00	0.00	292.04	0.03	293.10	0.00	294.12	12.51
291.02	0.01	292.08	0.03	293.12	0.06	294.14	12.55
291.06	0.01	292.10	0.00	293.14	0.06	294.18	12.57
291.08	0.01	292.12	0.03	293.16	0.06	294.20	12.59
291.10	0.01	292.14	0.03	293.18	0.06	294.22	12.62
291.12	0.01	292.16	0.04	293.20	0.06	294.24	12.64
291.14	0.01	292.18	0.04	293.22	0.07		
291.16	0.02	292.20	0.04	293.24	0.07		
291.18	0.02	292.22	0.04	293.26	0.07		
291.20	0.02	292.24	0.04	293.28	0.07		
291.22	0.02	292.26	0.04	293.30	0.07		
291.24	0.02	292.28	0.04	293.32	0.07		
291.26	0.02	292.30	0.04	<mark>293.34</mark>	0.07		
291.28	0.02	292.32	0.04	<mark>293.36</mark>	0.10		
291.30	0.02	292.34	0.04	293.38	0.21		
291.32	0.02	292.36	0.04	293.40	0.36		
291.34	0.02	292.38	0.04	293.42	0.56		
291.36	0.02	292.40	0.04	293.44	0.78		
291.38	0.02	292.42	0.04	293.46	1.03		
291.40	0.02	292.44	0.04	293.48	1.30		
291.42	0.02	292.46	0.04	293.50	1.59		
291.44	0.02	292.48	0.04	293.52	1.91		
291.46	0.02	292.50	0.04	293.54	2.24		
291.48	0.02	292.52	0.04	293.56	2.59		
291.50	0.02	292.54	0.05	293.58	2.96		
291.52	0.02	292.56	0.05	293.60	3.35		
291.54	0.02	292.58	0.05	293.62	3.75		
291.56	0.02	292.60	0.05	293.64	4.16		
291.58	0.02	292.62	0.05	293.66	4.59		
291.60	0.02	292.64	0.05	293.68	5.04		
291.62 291.64	0.02 0.02	292.66 292.68	0.05 0.05	293.70 293.72	5.50 5.97		
291.64	0.02	292.08	0.05	293.72	5.97 6.45		
291.68	0.02	292.70	0.05	293.74	6.95		
291.00	0.02	292.72	0.05	293.78	7.46		
291.70	0.02	292.74	0.05	293.80	7.98		
291.72	0.03	292.78	0.05	293.82	8.51		
291.76	0.00	292.80	0.05	293.84	9.06		
291.78	0.03	292.82	0.05	293.86	9.61		
291.80	0.03	292.84	0.05	293.88	10.18		
291.82	0.03	292.86	0.05	293.90	10.76		
291.84	0.03	292.88	0.06	293.92	11.35		
291.86	0.03	292.90	0.06	293.94	11.94		
291.88	0.03	292.92	0.06	293.96	12.33		
291.90	0.03	292.94	0.06	293.98	12.35		
291.92	0.03	292.96	0.06	294.00	12.38		
291.94	0.03	292.98	0.06	294.02	12.40		
291.96	0.03	293.00	0.06	294.04	12.42		
291.98	0.03	293.02	0.06	294.06	12.44		
292.00	0.03	293.04	0.06	294.08	12.46		
292.02	0.03	293.06	0.06	294.10	12.49		
		l		I		l	

Prepared by Keach-Nordstrom Associates, Inc
HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 5P: Bioretention Pond 3

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
291.00	185	0	293.60	1,119	1,535
291.05	195	10	293.65	1,143	1,592
291.10	206	20	293.70	1,168	1,649
291.15	217	30	293.75	1,193	1,708
291.20	228	41	293.80	1,218	1,769
291.25	240	53	293.85	1,243	1,830
291.30	252	65	293.90	1,268	1,893
291.35	264	78	293.95	1,294	1,957
291.40 291.45	276 289	92 106	294.00 294.05	1,320	2,022
291.45	302	121	294.05	1,320 1,320	2,022 2,022
291.55	315	136	294.10	1,320	2,022
291.60	329	150	294.10	1,320	2,022
291.65	343	169	294.25	1,320	2,022
291.70	358	186	201.20	1,020	2,022
291.75	372	205			
291.80	387	224			
291.85	403	243			
291.90	418	264			
291.95	434	285			
292.00	450	307			
292.05	467	330			
292.10	484	354			
292.15	502	379			
292.20 292.25	520	404 431			
292.25 292.30	538 557	458			
292.35	575	486			
292.40	595	516			
292.45	614	546			
292.50	634	577			
292.55	654	609			
292.60	674	642			
292.65	695	677			
292.70	716	712			
292.75	737	748			
292.80	759	786			
292.85	781	824			
292.90	803	864			
292.95 293.00	826 849	904 946			
293.00	870	940			
293.10	891	1,033			
293.15	913	1,078			
293.20	935	1,125			
293.25	957	1,172			
293.30	979	1,220			
<mark>293.35</mark>	1,002	1,270			
293.40	1,025	1,321			
293.45	1,048	1,372			
293.50	1,072	1,425			
293.55	1,095	1,480			
			l		

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #4

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).
0.70	ac	A = Area draining to the practice	
0.59	- ac	A ₁ = Impervious area draining to the practice	
0.85	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.81	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.57	ac-in	WQV= 1" x Rv x A	
2,061	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
515	cf	25% x WQV (check calc for sediment forebay volume)	
1,546	cf	75% x WQV (check calc for surface sand filter volume)	
Fore	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
686	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	- '	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	T_{DRAIN} = Drain time = V / ($A_{SA} * I_{DESIGN}$)	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
289.35	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.18	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
6.36	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
			—
286.50	feet	E _{FC} = Elevation of the bottom of the filter course material ²	_
286.50 285.50	-	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	_
	feet		
285.50	feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	it)
285.50 286.00	feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
285.50 286.00 282.00	feet feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	it) pit)
285.50 286.00 282.00 1.00	feet feet feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	it) pit) ≥ 1'
285.50 286.00 282.00 1.00 4.50	feet feet feet feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course	it) pit) ≥1' ≥1'
285.50 286.00 282.00 1.00 4.50 0.50	feet feet feet feet feet feet ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course	it) pit) ≥1' ≥1'
285.50 286.00 282.00 1.00 4.50 0.50 289.62	feet feet feet feet feet feet ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	it) pit) ≥1' ≥1'
285.50 286.00 282.00 1.00 4.50 0.50 289.62 290.25 YES If a surface	feet feet feet feet feet ft ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	it) pit) ≥ 1' ≥ 1' ≥ 1'
285.50 286.00 282.00 1.00 4.50 0.50 289.62 290.25 YES	feet feet feet feet feet ft ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	it) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
285.50 286.00 282.00 1.00 4.50 0.50 289.62 290.25 YES If a surface	feet feet feet feet feet ft ft sand filter	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
285.50 286.00 282.00 1.00 4.50 0.50 289.62 290.25 YES If a surface	feet feet feet feet feet ft ft sand filter ac	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac
285.50 286.00 282.00 1.00 4.50 0.50 289.62 290.25 YES If a surface	feet feet feet feet feet ft ft sand filter ac cf inches	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
285.50 286.00 282.00 1.00 4.50 0.50 289.62 290.25 YES If a surface YES	feet feet feet feet feet ft ft sand filter ac cf inches	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a biorete	ntion area	is proposed:	
YES	ас	Drainage Area no larger than 5 ac?	← yes
2,167	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	. 17	Note what sheet in the plan set contains the filter course specification	
3.0	:1	Pond side slopes	<u>> 3</u> :1
Sheet	: 9	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet		Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Bioretention Pond is to be lined with 30 mil impermeable liner.

NHDES Alteration of Terrain

Last Revised: January 2019

Elevation Primary Elevation Primary Elevation Primary (cfs) (feet) (cfs) (feet) (feet) (cfs) 0.00 0.17 290.08 7.64 288.00 289.04 288.02 0.11 289.06 0.17 290.10 7.66 288.04 0.11 289.08 0.17 290.12 7.68 7.69 288.06 0.11 289.10 0.17 290.14 288.08 0.11 289.12 0.17 290.16 7.71 0.12 289.14 7.73 288.10 0.17 290.18 288.12 0.12 289.16 7.75 0.17 290.20 288.14 0.12 289.18 7.77 0.17 290.22 288.16 0.12 289.20 0.18 290.24 7.79 288.18 0.12 289.22 0.18 288.20 0.12 289.24 0.18 288.22 0.12 289.26 0.18 0.12 0.18 288.24 289.28 288.26 0.12 289.30 0.18 0.13 288.28 289.32 0.18 288.30 0.13 289.34 0.18 0.13 0.21 288.32 289.36 288.34 0.13 289.38 0.32 288.36 0.13 289.40 0.48 288.38 0.13 289.42 0.67 288.40 0.13 289.44 0.90 288.42 0.13 289.46 1.15 288.44 0.13 289.48 1.42 288.46 289.50 0.13 1.71 288.48 0.14 2.03 289.52 0.14 288.50 289.54 2.36 288.52 0.14 289.56 2.71 288.54 0.14 289.58 3.08 288.56 0.14 289.60 3.47 288.58 0.14 289.62 3.87 4.29 288.60 0.14 289.64 288.62 0.14 289.66 4.72 288.64 0.14 289.68 5.16 0.15 5.62 288.66 289.70 0.15 6.09 288.68 289.72 6.58 288.70 0.15 289.74 288.72 0.15 289.76 7.08 288.74 0.15 289.78 7.35 0.15 7.37 288.76 289.80 288.78 0.15 7.39 289.82 0.15 7.41 288.80 289.84 0.15 7.43 288.82 289.86 288.84 0.16 289.88 7.45 288.86 0.16 289.90 7.47 288.88 0.16 289.92 7.49 288.90 0.16 289.94 7.51 288.92 0.16 289.96 7.53 288.94 0.16 289.98 7.54 288.96 0.16 290.00 7.56 0.16 7.58 288.98 290.02 0.16 7.60 289.00 290.04 0.17 7.62 289.02 290.06

Stage-Discharge for Pond 7P: Bioretention Pond 4

Stage-Area-Storage for Pond 7P: Bioretention Pond 4

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
288.00	1,583	0
288.05	1,622	80
288.10	1,661	162
288.15	1,700	246
288.20	1,739	332
288.25	1,779	420
288.30	1,818	510
288.35	1,857	602
288.40	1,896	696
288.45	1,935	792
288.50	1,974	889
288.55	2,013	989
288.60	2,013	1,091
288.65		1,194
	2,091	
288.70	2,130	1,300
288.75	2,170	1,407
288.80	2,209	1,517
288.85	2,248	1,628
288.90	2,287	1,741
288.95	2,326	1,857
289.00	2,365	1,974
289.05	2,407	2,093
289.10	2,448	2,215
289.15	2,490	2,338
289.20	2,532	2,464
289.25	2,573	2,591
289.30	2,615	2,721
289.35	2,657	2,853
289.40	2,698	2,987
289.45	2,740	3,123
289.50	2,782	3,261
289.55	2,823	3,401
289.60	2,865	3,543
289.65	2,906	3,687
289.70	2,948	3,834
289.75	2,990	3,982
289.80	3,031	4,133
289.85	3,073	4,285
289.90	3,115	4,440
289.95	3,156	4,597
290.00	3,198	4,756
290.05	3,198	4,756
290.10	3,198	4,756
290.15	3,198	4,756
290.13	3,198	4,756
290.25	3,198	4,756
290.20	5,190	4,750

15. EXTREME PRECIPITATION TABLE

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.646 degrees West
Latitude	42.822 degrees North
Elevation	0 feet
Date/Time	Mon, 16 Jan 2023 14:31:17 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.42	0.52	0.69	0.86	1.08	1yr	0.74	1.01	1.25	1.56	1.97	<mark>2.48</mark>	2.75	1yr	2.20	2.64	3.04	3.79	4.37	1yr
2yr	0.33	0.51	0.64	0.84	1.05	1.32	2yr	0.91	1.21	1.53	1.91	2.38	<mark>2.96</mark>	3.32	2yr	2.62	3.19	3.70	4.42	5.03	2yr
5yr	0.39	0.61	0.77	1.03	1.31	1.67	5yr	1.13	1.51	1.93	2.41	3.00	3.71	4.22	5yr	3.29	4.06	4.69	5.55	6.21	5yr
10yr	0.44	0.69	0.88	1.19	1.55	1.98	10yr	1.34	1.78	2.31	2.88	3.57	<mark>4.41</mark>	5.07	10yr	3.90	4.88	5.63	6.58	7.29	10yr
25yr	0.52	0.83	1.06	1.46	1.94	2.50	25yr	1.67	2.23	2.91	3.64	4.51	<mark>5.53</mark>	6.47	25yr	4.89	6.22	7.15	8.27	9.01	25yr
50yr	0.59	0.94	1.21	1.70	2.30	2.99	50yr	1.98	2.64	3.49	4.37	5.39	<mark>6.57</mark>	7.79	50yr	5.82	7.49	8.58	9.82	10.59	50yr
100yr	0.68	1.09	1.41	2.00	2.72	3.56	100yr	2.35	3.13	4.16	5.21	6.42	<mark>7.81</mark>	9.38	100yr	6.91	9.02	10.30	11.68	12.45	100yr
200yr	0.77	1.25	1.63	2.33	3.23	4.25	200yr	2.78	3.72	4.98	6.23	7.66	9.29	11.31	200yr	8.22	10.87	12.37	13.89	14.63	200yr
500yr	0.92	1.52	1.98	2.88	4.04	5.36	500yr	3.49	4.66	6.30	7.88	9.67	11.70	14.49	500yr	10.35	13.93	15.76	17.47	18.14	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.21	0.32	0.39	0.53	0.65	0.77	1yr	0.56	0.75	1.00	1.34	1.67	2.28	2.27	1yr	2.02	2.19	2.57	3.32	3.55	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.19	2yr	0.87	1.17	1.36	1.75	2.25	2.89	3.22	2yr	2.55	3.10	3.59	4.29	4.89	2yr
5yr	0.35	0.55	0.68	0.93	1.19	1.40	5yr	1.02	1.37	1.62	2.09	2.68	3.50	3.91	5yr	3.10	3.76	4.35	5.16	5.79	5yr
10yr	0.39	0.60	0.74	1.04	1.34	1.57	10yr	1.15	1.53	1.77	2.38	3.03	4.04	4.54	10yr	3.58	4.37	5.02	5.89	6.56	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.82	25yr	1.35	1.78	2.05	2.82	3.54	4.92	5.54	25yr	4.36	5.33	6.06	7.04	7.73	25yr
50yr	0.47	0.72	0.90	1.29	1.73	2.05	50yr	1.50	2.01	2.31	3.22	4.00	5.73	6.46	50yr	5.07	6.21	6.99	8.04	8.76	50yr
100yr	0.51	0.77	0.96	1.39	1.90	2.31	100yr	1.64	2.26	2.60	3.26	4.52	6.68	7.53	100yr	5.91	7.24	8.05	9.19	9.92	100yr
200yr	0.55	0.82	1.04	1.51	2.11	2.60	200yr	1.82	2.54	2.90	3.64	5.15	7.81	8.81	200yr	6.91	8.47	9.26	10.49	11.22	200yr
500yr	0.61	0.90	1.16	1.69	2.40	3.06	500yr	2.07	2.99	3.39	4.23	6.13	9.63	10.86	500yr	8.52	10.45	11.15	12.47	13.20	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.48	0.59	0.79	0.97	1.16	1yr	0.84	1.13	1.29	1.68	2.09	2.63	2.97	1yr	2.33	2.85	3.43	4.26	4.77	1yr
2yr	0.36	0.55	0.68	0.92	1.14	1.32	2yr	0.98	1.29	1.49	1.91	2.45	3.04	3.44	2yr	2.69	3.31	3.84	4.57	5.20	2yr
5yr	0.43	0.67	0.83	1.14	1.45	1.67	5yr	1.25	1.64	1.87	2.37	2.97	3.95	4.53	5yr	3.50	4.35	5.04	5.97	6.64	5yr
10yr	0.52	0.79	0.98	1.37	1.77	2.04	10yr	1.53	2.00	2.31	2.83	3.50	4.80	5.61	10yr	4.25	5.40	6.21	7.28	8.01	10yr
25yr	0.66	1.00	1.24	1.78	2.34	2.66	25yr	2.02	2.60	2.99	3.55	4.34	6.22	7.40	25yr	5.51	7.12	8.22	9.53	10.27	25yr
50yr	0.79	1.20	1.50	2.15	2.89	3.25	50yr	2.50	3.18	3.64	4.23	5.10	7.56	9.14	50yr	6.69	8.79	10.19	11.70	12.43	50yr
100yr	0.95	1.44	1.80	2.60	3.57	3.98	100yr	3.08	3.89	4.43	5.56	6.01	9.19	11.28	100yr	8.13	10.85	12.62	14.38	15.03	100yr
200yr	1.15	1.73	2.19	3.17	4.42	4.85	200yr	3.81	4.74	5.38	6.73	7.08	11.15	13.93	200yr	9.87	13.39	15.64	17.68	18.21	200yr
500yr	1.48	2.21	2.84	4.12	5.86	6.29	500yr	5.06	6.15	6.97	8.68	8.77	14.34	18.41	500yr	12.69	17.71	20.80	23.25	23.48	500yr

16. RIP RAP CALCULATIONS

KA KEACH-NORDSTROM ASSOCIATES, INC.

RIP RAP OUTLET PROTECTION APRON CALCULATIONS

2/15/2024

The purpose of this spreadsheet is to calculate the dimensions of rip rap required to help prevent soil loss for the 25 year storm event.

Required input to the spreadsheet is

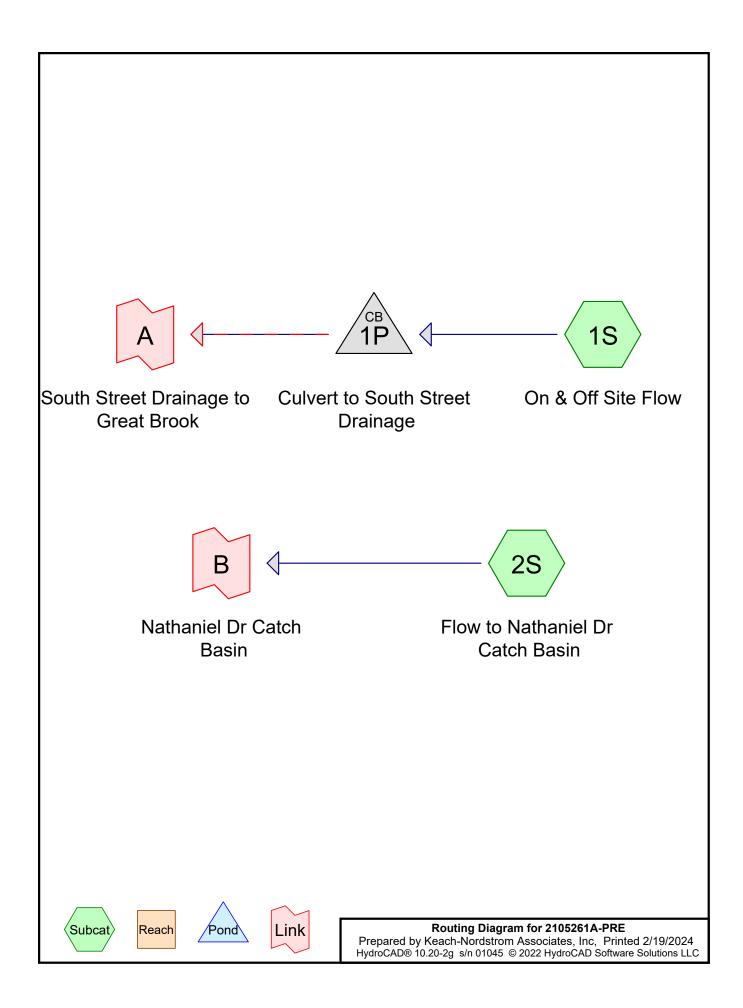
Q	peak flow in CFS
Do	diameter in feet of outlet or width of channel
Tw	tail water at end of apron

Depending on the tail water conditions either column 1 or column 2 is used for calculations Column One where Tw<1/2Do Column One where Tw>1/2Do

Length of Apron

La = (1.8Q/Do^3/2)+7Do

La = 3*Q/Do^3/2+7Do


W1=3*Do W2=3Do+0.4*La

Same

Width of Apron at outfall
W1=3*Do
W2 = 3Do + La
If defined channel use channel width for W1 and W2
Rock Rip Rap
$d50 = (0.02*Q^4/3)/(Tw*Do)$

											d1(00	d8	35	d	50	ď	15		
Input to Chart					Calculated Out	tput	W2			USE	FROM	ТО	FROM	ΤO	FROM	TO	FROM	TO	depth	USE depth
Description (O	Optional)	Q 25 (cfs)	Do (ft)	Tw (ft)	La	W1	no channel	d50, ft	d50 in	d50 in.	in	in	in	in	in	in	in	in	in	in.
POND#1 Po	ond #1 Forebay	1.77	1.00	1.00	12	3	8	0.0	0.51	4	6	8	5	7	4	6	1	2	10	10
POND#2 Po	ond #2 Forebay	2.53	1.00	1.00	15	3	9	0.1	0.83	4	6	8	5	7	4	6	1	2	10	10
POND#3 Po	ond #3 Forebay	2.24	1.00	1.00	14	3	8	0.1	0.70	4	6	8	5	7	4	6	1	2	10	10
POND#4 Po	ond #4 Forebay	3.61	1.00	1.00	18	3	10	0.1	1.33	4	6	8	5	7	4	6	1	2	10	10
HW#32 H	leadwall #32 outlet	4.36	1.00	0.50	15	3	18	0.3	3.42	4	6	8	5	7	4	6	1	2	10	10
HW#51 H	leadwall #51 outlet	1.23	1.00	0.50	9	3	12	0.1	0.63	4	6	8	5	7	4	6	1	2	10	10

17. HYDROCAD DRAINAGE ANALYSIS

Project Notes

Rainfall events imported from "2112161-PRE-DEVELOPMENT.hcp"

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-yr	Type III 24-hr		Default	24.00	1	2.96	2
2	10-yr	Type III 24-hr		Default	24.00	1	4.41	2
3	25-yr	Type III 24-hr		Default	24.00	1	5.53	2
4	50-yr	Type III 24-hr		Default	24.00	1	6.57	2

Rainfall Events Listing (selected events)

2105261A-PRE

Area Listing (all nodes)

Area	CN	Description		
(acres)		(subcatchment-numbers)		
0.335	39	>75% Grass cover, Good, HSG A (1S)		
0.502	61	>75% Grass cover, Good, HSG B (1S, 2S)		
0.163	98	Paved parking, HSG A (1S)		
0.071	98	Paved parking, HSG B (1S)		
0.042	30	Woods, Good, HSG A (1S)		
10.040	55	Woods, Good, HSG B (1S)		
0.381	70	Woods, Good, HSG C (1S)		
0.259	77	Woods, Good, HSG D (1S)		
11.795	57	TOTAL AREA		

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.541	HSG A	1S
10.614	HSG B	1S, 2S
0.381	HSG C	1S
0.259	HSG D	1S
0.000	Other	
11.795		TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.335	0.502	0.000	0.000	0.000	0.837	>75% Grass cover, Good	1S, 2S
0.163	0.071	0.000	0.000	0.000	0.235	Paved parking	1S
0.042	10.040	0.381	0.259	0.000	10.723	Woods, Good	1S
0.541	10.614	0.381	0.259	0.000	11.795	TOTAL AREA	

2105261A-PRE Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LL	Type III 24-hr 2-yr Rainfall=2.96" Printed 2/19/2024 C Page 7				
Time span=0.00-24.00 hrs, dt=0.02 hrs, 12 Runoff by SCS TR-20 method, UH=SCS, W Reach routing by Dyn-Stor-Ind method , Pond routing b	201 points eighted-CN				
	1.99% Impervious Runoff Depth>0.23" nin CN=57 Runoff=0.98 cfs 0.228 af				
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=708 sf (Flow Length=53' Slope=0.2500 '/' Tc=6.0 r					
Pond 1P: Culvert to South Street Drainage Peak Primary=0.98 cfs 0.228 af Secondary=0.00 cf	Elev=284.95' Inflow=0.98 cfs 0.228 af fs 0.000 af Outflow=0.98 cfs 0.228 af				
Link A: South Street Drainage to Great Brook	Inflow=0.98 cfs 0.228 af Primary=0.98 cfs 0.228 af				

Link B: Nathaniel Dr Catch Basin

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 11.795 acRunoff Volume = 0.228 afAverage Runoff Depth = 0.23"98.01% Pervious = 11.560 ac1.99% Impervious = 0.235 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	0.98 cfs @	12.53 hrs,	Volume=	0.228 af,	Depth> 0.23"
Routed	I to Pond		-			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

_	А	rea (sf)	CN I	Description				
		7,122	98 I	Paved park	ing, HSG A	N Contraction of the second seco		
		3,105	98 I	Paved park	ing, HSG B	3		
		14,601	39 >	>75% Gras	s cover, Go	bod, HSG A		
		21,172	61 >	>75% Gras	s cover, Go	bod, HSG B		
		1,849		,	od, HSG A			
		37,354			od, HSG B			
		16,614		,	od, HSG C			
_		11,266	77 \	Voods, Go	od, HSG D			
		13,083		Veighted A	0			
		02,856		98.01% Pervious Area				
		10,227		1.99% Impervious Area				
	-		0		0			
	Tc	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.7	50	0.1000	0.12		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 2.96"		
	10.6	1,192	0.1400	1.87		Shallow Concentrated Flow,		
						Woodland Kv= 5.0 fps		
	2.1	118	0.0350	0.94		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	19.4	1,360	Total					

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff = 0.00 cfs @ 12.14 hrs, Volume= 0.000 a Routed to Link B : Nathaniel Dr Catch Basin

0.000 af, Depth> 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN E	escription					
	708	61 >	75% Gras	s cover, Go	bod, HSG B			
	708	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
2.1	50	0.2500	0.39	x	Sheet Flow,			
0.0	3	0.2500	2.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
2.1	53	Total, I	ncreased t	o minimum	n Tc = 6.0 min			

Summary for Pond 1P: Culvert to South Street Drainage

Inflow Area = 11.779 ac, 1.99% Impervious, Inflow Depth > 0.23" for 2-yr event Inflow 0.98 cfs @ 12.53 hrs, Volume= 0.228 af = Outflow 0.98 cfs @ 12.53 hrs, Volume= = 0.228 af, Atten= 0%, Lag= 0.0 min 0.98 cfs @ 12.53 hrs, Volume= Primary = 0.228 af Routed to Link A : South Street Drainage to Great Brook Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link A : South Street Drainage to Great Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 284.95' @ 12.53 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
			L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.00'	
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=0.98 cfs @ 12.53 hrs HW=284.95' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.98 cfs @ 2.33 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.48' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Link A: South Street Drainage to Great Brook

Inflow Area	a =	11.779 ac,	1.99% Impervious,	Inflow Depth > 0.	23" for 2-yr event
Inflow	=	0.98 cfs @	12.53 hrs, Volume	= 0.228 af	
Primary	=	0.98 cfs @	12.53 hrs, Volume	= 0.228 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.016 ac,	0.00% Impervious, Inflow	Depth > 0.35"	for 2-yr event
Inflow =	0.00 cfs @	12.14 hrs, Volume=	0.000 af	·
Primary =	0.00 cfs @	12.14 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-PRE	Type III 24-hr 10-yr Rainfall=4.41"
Prepared by Keach-Nordstrom Associates, Inc	Printed 2/19/2024
HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions L	LC Page 10
	-
Time span=0.00-24.00 hrs, dt=0.02 hrs,	1201 points
Runoff by SCS TR-20 method, UH=SCS, V	Veighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing	by Dyn-Stor-Ind method
Subcatchment1S: On & Off Site Flow Runoff Area=513,083 sf	1.99% Impervious Runoff Depth>0.80"
Flow Length=1,360' Tc=19.4	min CN=57 Runoff=5.84 cfs 0.786 af
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=708 sf	0.00% Impervious Runoff Depth>1.03"
Flow Length=53' Slope=0.2500 '/' Tc=6.0	min CN=61 Runoff=0.02 cfs 0.001 af
Pond 1P: Culvert to South Street Drainage Peal	k Elev=286.08' Inflow=5.84 cfs 0.786 af
Primary=5.84 cfs 0.786 af Secondary=0.00	cfs 0.000 af Outflow=5.84 cfs 0.786 af
Link A: South Street Drainage to Great Brook	Inflow=5.84 cfs 0.786 af
	Primary=5.84 cfs 0.786 af

Link B: Nathaniel Dr Catch Basin

Inflow=0.02 cfs 0.001 af Primary=0.02 cfs 0.001 af

Total Runoff Area = 11.795 acRunoff Volume = 0.787 afAverage Runoff Depth = 0.80"98.01% Pervious = 11.560 ac1.99% Impervious = 0.235 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff = 5.84 cfs @ 12.34 hrs, Volume= 0.786 af, Depth> 0.80" Routed to Pond 1P : Culvert to South Street Drainage

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

_	A	rea (sf)	CN I	Description					
		7,122	98 I	[⊃] aved park	ing, HSG A	Α			
		3,105	98 I	[.] ⊃aved park	ing, HSG B	3			
		14,601	39 :	>75% Ġras	s cover, Go	bod, HSG A			
		21,172	61 🗧	>75% Gras	s cover, Go	bod, HSG B			
		1,849	30 \	Noods, Go	od, HSG A				
	4	37,354	55	Noods, Go	od, HSG B				
		16,614		,	od, HSG C				
_		11,266	77 \	<u> Noods, Go</u>	od, HSG D				
	5	13,083		Neighted A	0				
		02,856	ę	98.01% Pervious Area					
	10,227			1.99% Impervious Area					
	-		<u>.</u>		o "				
	ŢĊ	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	, ,	(cfs)				
	6.7	50	0.1000	0.12		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 2.96"			
	10.6	1,192	0.1400	1.87		Shallow Concentrated Flow,			
	. .					Woodland Kv= 5.0 fps			
	2.1	118	0.0350	0.94		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	19.4	1,360	Total						

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff = 0.02 cfs @ 12.10 hrs, Volume= 0.001 af, Depth> 1.03" Routed to Link B : Nathaniel Dr Catch Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

 А	rea (sf)	CN D	Description					
 708 61 >75% Grass cover, Good, HSG B								
	708	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
 2.1	50	0.2500	0.39		Sheet Flow,			
0.0	3	0.2500	2.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
 2.1	53	Total, I	ncreased t	o minimum	Tc = 6.0 min			

Summary for Pond 1P: Culvert to South Street Drainage

Inflow Area = 11.779 ac, 1.99% Impervious, Inflow Depth > 0.80" for 10-yr event Inflow 5.84 cfs @ 12.34 hrs, Volume= 0.786 af = Outflow 5.84 cfs @ 12.34 hrs, Volume= = 0.786 af, Atten= 0%, Lag= 0.0 min 5.84 cfs @ 12.34 hrs, Volume= Primary = 0.786 af Routed to Link A : South Street Drainage to Great Brook Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link A : South Street Drainage to Great Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 286.08' @ 12.34 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
	-		L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.00'	
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=5.83 cfs @ 12.34 hrs HW=286.08' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 5.83 cfs @ 4.75 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.48' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Link A: South Street Drainage to Great Brook

Inflow Area	a =	11.779 ac,	1.99% Impervious, Inflo	w Depth > 0.80"	for 10-yr event
Inflow	=	5.84 cfs @	12.34 hrs, Volume=	0.786 af	
Primary	=	5.84 cfs @	12.34 hrs, Volume=	0.786 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.016 ac,	0.00% Impervious, Inflow D	Depth > 1.03" for 10-yr event	
Inflow =	0.02 cfs @	12.10 hrs, Volume=	0.001 af	
Primary =	0.02 cfs @	12.10 hrs, Volume=	0.001 af, Atten= 0%, Lag= 0.0 mir	n

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-PRE Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g_s/n 01045 © 2022 HydroCAD Software Solutions L	<i>Type III 24-hr 25-yr Rainfall=5.53"</i> Printed 2/19/2024 <u>LC Page 13</u>
Time span=0.00-24.00 hrs, dt=0.02 hrs, ت Runoff by SCS TR-20 method, UH=SCS, ۱ Reach routing by Dyn-Stor-Ind method - Pond routing	Weighted-CN
	1.99% Impervious Runoff Depth>1.39" min CN=57 Runoff=11.60 cfs 1.365 af
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=708 sf Flow Length=53' Slope=0.2500 '/' Tc=6.0	
Pond 1P: Culvert to South Street Drainage Peak Primary=10.14 cfs 1.347 af Secondary=1.46 c	Elev=288.05' Inflow=11.60 cfs 1.365 af fs 0.018 af Outflow=11.60 cfs 1.365 af
Link A: South Street Drainage to Great Brook	Inflow=11.60 cfs 1.365 af Primary=11.60 cfs 1.365 af
Link B: Nathaniel Dr Catch Basin	Inflow=0.03 cfs 0.002 af Primary=0.03 cfs 0.002 af

Total Runoff Area = 11.795 acRunoff Volume = 1.367 afAverage Runoff Depth = 1.39"98.01% Pervious = 11.560 ac1.99% Impervious = 0.235 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	11.60 cfs @	12.30 hrs,	Volume=	1.365 af,	Depth> 1.39"
Route	d to Po	ond 1P : Culvert	to South S	treet Drainage		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

Ar	rea (sf)	CN E	Description		
	7,122	98 F	aved park	ing, HSG A	N
	3,105	98 F	aved park	ing, HSG B	3
	14,601	39 >	·75% Ġras	s cover, Go	bod, HSG A
:	21,172	61 >	75% Gras	s cover, Go	bod, HSG B
	1,849	30 V	Voods, Go	od, HSG A	
43	37,354	55 V	Voods, Go	od, HSG B	
	16,614	70 V	Voods, Go	od, HSG C	
	11,266	77 V	Voods, Go	od, HSG D	
5	13,083	57 V	Veighted A	verage	
5	02,856	g	8.01% Pe	vious Area	L
	10,227	1	.99% Impe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.7	50	0.1000	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.96"
10.6	1,192	0.1400	1.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.1	118	0.0350	0.94		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
19.4	1,360	Total			

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff 0.03 cfs @ 12.10 hrs, Volume= = Routed to Link B : Nathaniel Dr Catch Basin

0.002 af, Depth> 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

A	rea (sf)	CN D	escription						
	708	61 >	61 >75% Grass cover, Good, HSG B						
	708	1	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.1	50	0.2500	0.39		Sheet Flow,				
0.0	3	0.2500	2.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
2.1	53	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Summary for Pond 1P: Culvert to South Street Drainage

Inflow Area = 11.779 ac, 1.99% Impervious, Inflow Depth > 1.39" for 25-yr event Inflow 11.60 cfs @ 12.30 hrs, Volume= 1.365 af = Outflow 11.60 cfs @ 12.30 hrs, Volume= = 1.365 af, Atten= 0%, Lag= 0.0 min 10.14 cfs @ 12.30 hrs, Volume= Primary = 1.347 af Routed to Link A : South Street Drainage to Great Brook Secondary = 1.46 cfs @ 12.30 hrs, Volume= 0.018 af Routed to Link A : South Street Drainage to Great Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 288.05' @ 12.30 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
	-		L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.00'	
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=10.14 cfs @ 12.30 hrs HW=288.05' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 10.14 cfs @ 8.26 fps)

Secondary OutFlow Max=1.45 cfs @ 12.30 hrs HW=288.05' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 1.45 cfs @ 0.73 fps)

Summary for Link A: South Street Drainage to Great Brook

Inflow Are	a =	11.779 ac,	1.99% Impervious, Ir	flow Depth > 1.39	' for 25-yr event
Inflow	=	11.60 cfs @	12.30 hrs, Volume=	1.365 af	
Primary	=	11.60 cfs @	12.30 hrs, Volume=	1.365 af, At	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.016 ac,	0.00% Impervious, Inflow E	Depth > 1.70" for 25-yr event	
Inflow =	0.03 cfs @	12.10 hrs, Volume=	0.002 af	
Primary =	0.03 cfs @	12.10 hrs, Volume=	0.002 af, Atten= 0%, Lag= 0.0	0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-PRE Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g_s/n 01045 © 2022 HydroCAD Software Solutions L	<i>Type III 24-hr 50-yr Rainfall=6.57"</i> Printed 2/19/2024 LC Page 16
Time span=0.00-24.00 hrs, dt=0.02 hrs, Runoff by SCS TR-20 method, UH=SCS, Reach routing by Dyn-Stor-Ind method - Pond routing	Weighted-CN
	1.99% Impervious Runoff Depth>2.02" min CN=57 Runoff=17.82 cfs 1.984 af
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=708 sf Flow Length=53' Slope=0.2500 '/' Tc=6.0	•
Pond 1P: Culvert to South Street DrainagePeakPrimary=10.31 cfs1.801 afSecondary=7.52 c	Elev=288.15' Inflow=17.82 cfs 1.984 af fs 0.183 af Outflow=17.82 cfs 1.984 af
Link A: South Street Drainage to Great Brook	Inflow=17.82 cfs 1.984 af Primary=17.82 cfs 1.984 af
Link B: Nathaniel Dr Catch Basin	Inflow=0.04 cfs 0.003 af Primary=0.04 cfs 0.003 af

Total Runoff Area = 11.795 acRunoff Volume = 1.988 afAverage Runoff Depth = 2.02"98.01% Pervious = 11.560 ac1.99% Impervious = 0.235 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	17.82 cfs @	12.29 hrs,	Volume=	1.984 af,	Depth> 2.02"
Route	d to Po	ond 1P : Culvert	to South S	treet Drainage		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

Ar	rea (sf)	CN E	Description		
	7,122	98 F	aved park	ing, HSG A	N
	3,105	98 F	aved park	ing, HSG B	3
	14,601	39 >	·75% Ġras	s cover, Go	bod, HSG A
:	21,172	61 >	75% Gras	s cover, Go	bod, HSG B
	1,849	30 V	Voods, Go	od, HSG A	
43	37,354	55 V	Voods, Go	od, HSG B	
	16,614	70 V	Voods, Go	od, HSG C	
	11,266	77 V	Voods, Go	od, HSG D	
5	13,083	57 V	Veighted A	verage	
5	02,856	g	8.01% Pe	vious Area	L
	10,227	1	.99% Impe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.7	50	0.1000	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.96"
10.6	1,192	0.1400	1.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.1	118	0.0350	0.94		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
19.4	1,360	Total			

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff 0.04 cfs @ 12.09 hrs, Volume= = Routed to Link B : Nathaniel Dr Catch Basin

0.003 af, Depth> 2.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

A	rea (sf)	CN D	Description						
	708	61 >	61 >75% Grass cover, Good, HSG B						
	708	1	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.1	50	0.2500	0.39		Sheet Flow,				
0.0	3	0.2500	2.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
2.1	53	Total, I	ncreased t	o minimum	1 Tc = 6.0 min				

Summary for Pond 1P: Culvert to South Street Drainage

Inflow Area = 11.779 ac, 1.99% Impervious, Inflow Depth > 2.02" for 50-yr event Inflow 17.82 cfs @ 12.29 hrs, Volume= 1.984 af = Outflow 17.82 cfs @ 12.29 hrs, Volume= = 1.984 af, Atten= 0%, Lag= 0.0 min 10.31 cfs @ 12.29 hrs, Volume= Primary = 1.801 af Routed to Link A : South Street Drainage to Great Brook Secondary = 7.52 cfs @ 12.29 hrs, Volume= 0.183 af Routed to Link A : South Street Drainage to Great Brook

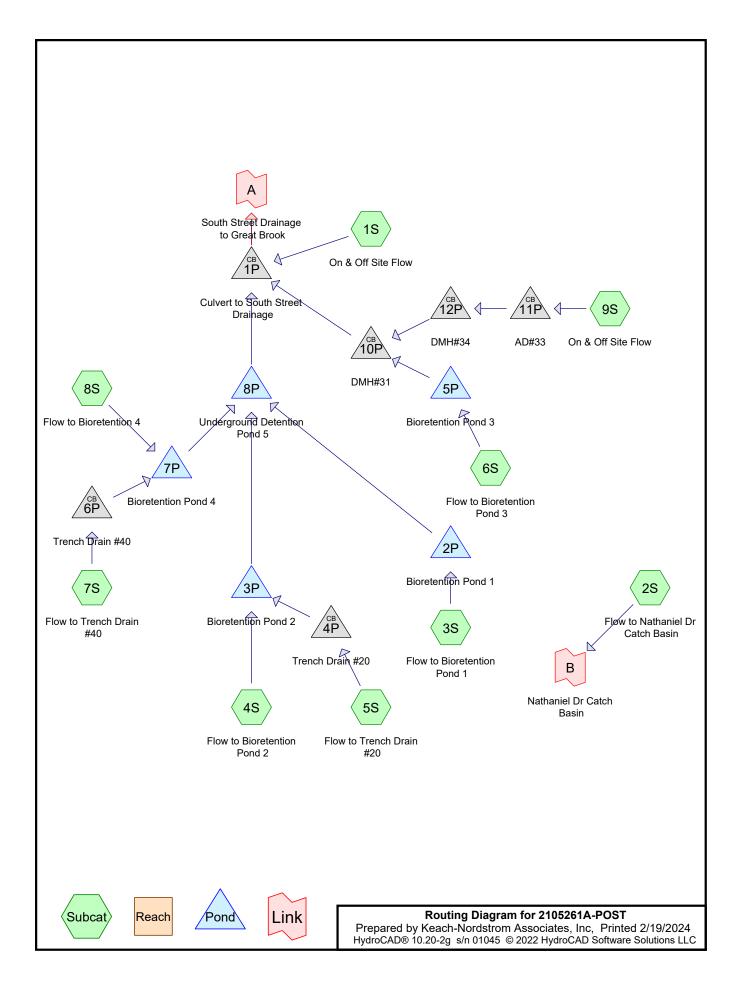
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 288.15' @ 12.29 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
	-		L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.00'	
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=10.31 cfs @ 12.29 hrs HW=288.15' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 10.31 cfs @ 8.40 fps)

Secondary OutFlow Max=7.49 cfs @ 12.29 hrs HW=288.15' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 7.49 cfs @ 1.28 fps)

Summary for Link A: South Street Drainage to Great Brook


Inflow Area	a =	11.779 ac,	1.99% Impervious, In	flow Depth > 2.02"	for 50-yr event
Inflow	=	17.82 cfs @	12.29 hrs, Volume=	1.984 af	-
Primary	=	17.82 cfs @	12.29 hrs, Volume=	1.984 af, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.016 ac,	0.00% Impervious, Inflo	w Depth > 2.39"	for 50-yr event
Inflow =	0.04 cfs @	12.09 hrs, Volume=	0.003 af	
Primary =	0.04 cfs @	12.09 hrs, Volume=	0.003 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Project Notes

Rainfall events imported from "2112161-PRE-DEVELOPMENT.hcp"

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-yr	Type III 24-hr		Default	24.00	1	2.96	2
2	10-yr	Type III 24-hr		Default	24.00	1	4.41	2
3	25-yr	Type III 24-hr		Default	24.00	1	5.53	2
4	50-yr	Type III 24-hr		Default	24.00	1	6.57	2

Rainfall Events Listing (selected events)

2105261A-POST

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.282	39	>75% Grass cover, Good, HSG A (1S, 4S)
1.200	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S)
0.036	74	>75% Grass cover, Good, HSG C (7S, 8S)
0.259	98	Paved parking, HSG A (1S, 4S)
1.280	98	Paved parking, HSG B (1S, 3S, 4S, 5S, 6S, 7S)
0.153	98	Roofs, HSG B (3S, 5S, 6S, 7S)
7.977	55	Woods, Good, HSG B (1S, 3S, 9S)
0.345	70	Woods, Good, HSG C (1S)
0.259	77	Woods, Good, HSG D (9S)
11.792	62	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.541	HSG A	1S, 4S
10.610	HSG B	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S
0.381	HSG C	1S, 7S, 8S
0.259	HSG D	9S
0.000	Other	
11.792		TOTAL AREA

2105261A-POST

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.282	1.200	0.036	0.000	0.000	1.518	>75% Grass cover, Good	1S, 2S,
							3S, 4S,
							5S, 6S,
							7S, 8S,
							9S
0.259	1.280	0.000	0.000	0.000	1.539	Paved parking	1S, 3S,
							4S, 5S,
							6S, 7S
0.000	0.153	0.000	0.000	0.000	0.153	Roofs	3S, 5S,
							6S, 7S
0.000	7.977	0.345	0.259	0.000	8.581	Woods, Good	1S, 3S,
							9S
0.541	10.610	0.381	0.259	0.000	11.792	TOTAL AREA	

Ground Covers (all nodes)

Z105261A-POSTType III 24-hr2-yr Rainfall=2.96"Prepared by Keach-Nordstrom Associates, IncPrinted 2/19/2024HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLCPage 7
Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: On & Off Site FlowRunoff Area=260,268 sf4.85% ImperviousRunoff Depth>0.26"Flow Length=1,333'Tc=17.5 minCN=58Runoff=0.62 cfs0.129 af
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=570 sf 0.00% Impervious Runoff Depth>0.35" Flow Length=53' Slope=0.2500 '/' Tc=6.0 min CN=61 Runoff=0.00 cfs 0.000 af
Subcatchment3S: Flow to Bioretention Runoff Area=36,791 sf 17.43% Impervious Runoff Depth>0.49" Flow Length=380' Tc=8.4 min CN=65 Runoff=0.32 cfs 0.034 af
Subcatchment4S: Flow to BioretentionRunoff Area=17,403 sf62.38% ImperviousRunoff Depth>1.28"Flow Length=20'Slope=0.0050 '/'Tc=6.0 minCN=81Runoff=0.59 cfs0.043 af
Subcatchment5S: Flow to Trench Drain #20 Runoff Area=7,328 sf 96.70% Impervious Runoff Depth>2.62" Flow Length=81' Tc=6.0 min CN=97 Runoff=0.47 cfs 0.037 af
Subcatchment6S: Flow to Bioretention Runoff Area=24,188 sf 54.89% Impervious Runoff Depth>1.28" Flow Length=60' Tc=6.0 min CN=81 Runoff=0.82 cfs 0.059 af
Subcatchment7S: Flow to Trench Drain Flow Length=169' Tc=6.0 min CN=94 Runoff=1.57 cfs 0.116 af
Subcatchment8S: Flow to Bioretention4 Runoff Area=3,808 sf 0.00% Impervious Runoff Depth>0.45" Flow Length=10' Slope=0.2500 '/' Tc=6.0 min CN=64 Runoff=0.03 cfs 0.003 af
Subcatchment9S: On & Off Site Flow Runoff Area=137,078 sf 0.00% Impervious Runoff Depth>0.23" Flow Length=1,012' Tc=18.7 min CN=57 Runoff=0.26 cfs 0.061 af
Pond 1P: Culvert to South Street DrainagePeak Elev=284.95'Inflow=0.98 cfs0.367 afPrimary=0.98 cfs0.367 afSecondary=0.00 cfs0.000 afOutflow=0.98 cfs0.367 af
Pond 2P: Bioretention Pond 1Peak Elev=292.42' Storage=344 cf Inflow=0.32 cfs 0.034 af Outflow=0.07 cfs 0.034 af
Pond 3P: Bioretention Pond 2Peak Elev=290.22'Storage=1,353 cfInflow=1.07 cfs0.079 afOutflow=0.11 cfs0.079 af
Pond 4P: Trench Drain #20 Peak Elev=290.79' Inflow=0.47 cfs 0.037 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0300 '/' Outflow=0.47 cfs 0.037 af
Pond 5P: Bioretention Pond 3Peak Elev=293.27'Storage=1,187 cfInflow=0.82 cfs0.059 afOutflow=0.07 cfs0.053 af
Pond 6P: Trench Drain #40 Peak Elev=290.29' Inflow=1.57 cfs 0.116 af 12.0" Round Culvert n=0.013 L=8.0' S=0.0200 '/' Outflow=1.57 cfs 0.116 af
Pond 7P: Bioretention Pond 4Peak Elev=288.99'Storage=1,942 cfInflow=1.60 cfs0.119 afOutflow=0.16 cfs0.119 af

2105261A-POST Prepared by Keach-Nordstro HydroCAD® 10.20-2g_s/n 01045		24-hr 2-yr Rainfall=2.96" Printed 2/19/2024 Page 8			
Pond 8P: Underground Deter	ntion Pond 5 Peak Elev=287.35' Storage=5,174 of	cf Inflow=0.35 cfs 0.233 af Outflow=0.26 cfs 0.124 af			
Pond 10P: DMH#31	Peak Elev=286.6 15.0" Round Culvert n=0.013 L=135.0' S=0.0100 '/'	1' Inflow=0.33 cfs 0.114 af Outflow=0.33 cfs 0.114 af			
Pond 11P: AD#33	Peak Elev=308.2 15.0" Round Culvert n=0.013 L=41.0' S=0.0800 '/	3' Inflow=0.26 cfs 0.061 af Outflow=0.26 cfs 0.061 af			
Pond 12P: DMH#34	Peak Elev=303.0 15.0" Round Culvert n=0.013 L=135.0' S=0.0800 '/'	3' Inflow=0.26 cfs 0.061 af Outflow=0.26 cfs 0.061 af			
Link A: South Street Drainage to Great Brook Inflow=0.98 cfs Primary=0.98 cfs					
Link B: Nathaniel Dr Catch Ba	asin	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af			
Total Runoff A	rea = 11.792 ac Runoff Volume = 0.482 af Av	erage Runoff Depth = 0.49'			

Total Runoff Area = 11.792 acRunoff Volume = 0.482 afAverage Runoff Depth = 0.49"85.65% Pervious = 10.099 ac14.35% Impervious = 1.692 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	0.62 cfs @	12.49 hrs,	Volume=	0.129 af,	Depth> 0.26"
Routed	I to Pond	1 1P : Culvert	to South S	treet Drainage		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN E	Description							
	8,992		Paved parking, HSG A							
	3,620	98 F	Paved parking, HSG B							
	10,053	39 >	>75% Grass cover, Good, HSG A							
	11,033	61 >	>75% Grass cover, Good, HSG B							
2	11,534		,	od, HSG B						
	15,036	70 V	Voods, Go	od, HSG C						
	60,268		Veighted A	0						
2	47,656	-		rvious Area						
	12,612	4	.85% Impe	ervious Are	а					
Та	Length	Slope	Velocity	Capacity	Description					
Tc					Deschouon					
	•				Beconption					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	•				Sheet Flow,					
<u>(min)</u> 6.7	(feet) 50	(ft/ft) 0.1000	(ft/sec) 0.12		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96"					
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow,					
(min) 6.7 8.8	(feet) 50 986	(ft/ft) 0.1000 0.1400	(ft/sec) 0.12 1.87		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps					
<u>(min)</u> 6.7	(feet) 50	(ft/ft) 0.1000	(ft/sec) 0.12		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,					
(min) 6.7 8.8	(feet) 50 986	(ft/ft) 0.1000 0.1400	(ft/sec) 0.12 1.87		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps					

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff = 0.00 cfs @ 12.14 hrs, Volume= 0.000 af, Depth> 0.35" Routed to Link B : Nathaniel Dr Catch Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN D	Description						
	570	61 >	61 >75% Grass cover, Good, HSG B						
	570	1	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.1	50	0.2500	0.39		Sheet Flow,				
0.0	3	0.2500	3.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps				
2.1	53	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment 3S: Flow to Bioretention Pond 1

Runoff = 0.32 cfs @ 12.15 hrs, Volume= 0.034 af, Depth> 0.49" Routed to Pond 2P : Bioretention Pond 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

Α	rea (sf)	CN E	Description						
	1,782	98 F	Roofs, HSG B						
	4,630		Paved parking, HSG B						
	13,628	61 >	>75% Grass cover, Good, HSG B						
	16,751	55 V	Noods, Good, HSG B						
	36,791	65 V	65 Weighted Average						
	30,379	-		vious Area					
	6,412	1	7.43% Imp	pervious Ar	ea				
_									
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.9	50	0.1400	0.14		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.96"				
2.3	271	0.1587	1.99		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.2	59	0.3500	4.14		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
8.4	380	Total							

Summary for Subcatchment 4S: Flow to Bioretention Pond 2

Runoff = 0.59 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Bioretention Pond 2 0.043 af, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN E	Description					
	2,308	98 F	Paved parki	ing, HSG A				
	8,548	98 F	Paved parki	ing, HSG B				
	2,217	39 >	>75% Grass	s cover, Go	ood, HSG A			
	4,330	61 >	-75% Grass	s cover, Go	od, HSG B			
	17,403	81 V	Veighted A	verage				
	6,547	3	37.62% Per	vious Area				
	10,856	6	62.38% Imp	pervious Are	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.9	20	0.0050	0.07		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 2.96"	
4.9	20	Total, I	Increased t	o minimum	Tc = 6.0 min			
4.9	20	Total, I	Increased t	o minimum		<u>n= 0.150</u>	P2= 2.96"	

Summary for Subcatchment 5S: Flow to Trench Drain #20

Runoff = 0.47 cfs @ 12.08 hrs, Volume= 0.037 af, Depth> 2.62" Routed to Pond 4P : Trench Drain #20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

Α	rea (sf)	CN E	Description				
	1,583	98 F	98 Roofs, HSG B				
	242	61 >	75% Gras	s cover, Go	bod, HSG B		
	5,503	98 F	aved park	ing, HSG B	3		
	7,328	97 V	Veighted A	verage			
	242	3	.30% Perv	vious Area			
	7,086	9	6.70% Imp	pervious Ar	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
2.3	11	0.0100	0.08		Sheet Flow,		
					Grass: Short n= 0.150 P2= 2.96"		
0.4	70	0.0200	2.87		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
2.7	81	Total, I	ncreased t	o minimum	1 Tc = 6.0 min		

Summary for Subcatchment 6S: Flow to Bioretention Pond 3

Runoff = 0.82 cfs @ 12.09 hrs, Volume= Routed to Pond 5P : Bioretention Pond 3 0.059 af, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

	A	rea (sf)	CN D	escription		
		1,754	98 F	loofs, HSG	ВВ	
		11,522	98 P	aved park	ing, HSG B	
		10,912	61 >	75% Gras	s cover, Go	od, HSG B
		24,188	81 V	Veighted A	verage	
		10,912	4	5.11% Per	vious Area	
		13,276	5	4.89% Imp	ervious Are	ea
	Tc	Length	Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.7	20	0.0100	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.96"
	0.2	40	0.0200	2.87		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.9	60	Total, I	ncreased t	o minimum	Tc = 6.0 min
			,			

Summary for Subcatchment 7S: Flow to Trench Drain #40

Runoff = 1.57 cfs @ 12.08 hrs, Volume= 0.116 af, Depth> 2.31" Routed to Pond 6P : Trench Drain #40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN D	escription		
	21,923	98 P	aved park	ing, HSG B	3
	394	74 >	75% Gras	s cover, Go	bod, HSG C
	1,557	98 F	loofs, HSG	БB	
	2,143	61 >	75% Gras	s cover, Go	bod, HSG B
	187	74 >	75% Gras	s cover, Go	bod, HSG C
	26,204	94 V	Veighted A	verage	
	2,724	1	0.40% Per	vious Area	
	23,480	8	9.60% Imp	ervious Ar	ea
_				•	-
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	50	0.0800	0.25		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.96"
0.5	19	0.0100	0.70		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.6	100	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.5	169	Total, I	ncreased t	o minimum	n Tc = 6.0 min

Summary for Subcatchment 8S: Flow to Bioretention 4

Runoff = 0.03 cfs @ 12.12 hrs, Volume= 0.003 af, Depth> 0.45" Routed to Pond 7P : Bioretention Pond 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN	Description					
	2,812	61	>75% Gras	s cover, Go	ood, HSG B			
	996	74	>75% Gras	s cover, Go	ood, HSG C			
	3,808	64	Weighted A	verage				
	3,808		100.00% Pe	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description			
0.6	10	0.250	0.28		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 2.96"	
0.6	10	Total,	Increased t	o minimum	Tc = 6.0 min			

Summary for Subcatchment 9S: On & Off Site Flow

Runoff = 0.26 cfs @ 12.52 hrs, Volume= 0.061 af, Depth> 0.23" Routed to Pond 11P : AD#33

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=2.96"

A	rea (sf)	CN [Description		
	6,611	61 >	>75% Gras	s cover, Go	bod, HSG B
	,		,	·	
	11,266	77 \	Noods, Go	od, HSG D	
	,				
1	37,078		100.00% P	ervious Are	a
Тс	Longth	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
6.7	50	0.1000	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.96"
7.4	803	0.1300	1.80		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.1	25	0.2800	3.70		Shallow Concentrated Flow,
4 5	40.4	0 0050	0.40		Short Grass Pasture Kv= 7.0 fps
4.5	134	0.0050	0.49		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
	1 1 Tc (min) 6.7	119,201 11,266 137,078 137,078 137,078 Tc Length (feet) 6.7 50 7.4 803 0.1 25 4.5 134	6,611 61 119,201 55 11,266 77 137,078 57 137,078 57 Tc Length (feet) (ft/ft) 6.7 50 0.1000 7.4 803 0.1300 0.1 25 4.5 134	6,611 61 >75% Gras 119,201 55 Woods, Go 11,266 77 Woods, Go 137,078 57 Weighted A 137,078 100.00% Pe Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 6.7 50 0.1000 0.12 7.4 803 0.1300 1.80 0.1 25 0.2800 3.70 4.5 134 0.0050 0.49	6,611 61 >75% Grass cover, Go 119,201 55 Woods, Good, HSG B 11,266 77 Woods, Good, HSG D 137,078 57 Weighted Average 137,078 57 Weighted Average 137,078 100.00% Pervious Are Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 6.7 50 0.1000 0.12 7.4 803 0.1300 1.80 0.1 25 0.2800 3.70 4.5 134 0.0050 0.49

18.7 1,012 Total

Summary for Pond 1P: Culvert to South Street Drainage

Inflow Area =	11.778 ac, 14.37% Impervious, Inflow	Depth > 0.37" for 2-yr event
Inflow =	0.98 cfs @ 12.50 hrs, Volume=	0.367 af
Outflow =	0.98 cfs @ 12.50 hrs, Volume=	0.367 af, Atten= 0%, Lag= 0.0 min
Primary =	0.98 cfs @ 12.50 hrs, Volume=	0.367 af
Routed to Lin	ik A : South Street Drainage to Great Broo	ok
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Lin	ik A : South Street Drainage to Great Broo	ok

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 284.95' @ 12.50 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
			L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.50'	20.0' long x 1.00' rise Sharp-Crested Rectangular Weir X 2.00
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=0.98 cfs @ 12.50 hrs HW=284.95' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.98 cfs @ 2.33 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.48' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2P: Bioretention Pond 1

 Inflow Area =
 0.845 ac, 17.43% Impervious, Inflow Depth > 0.49" for 2-yr event

 Inflow =
 0.32 cfs @ 12.15 hrs, Volume=
 0.034 af

 Outflow =
 0.07 cfs @ 12.89 hrs, Volume=
 0.034 af, Atten= 77%, Lag= 44.4 min

 Primary =
 0.07 cfs @ 12.89 hrs, Volume=
 0.034 af

 Routed to Pond 8P : Underground Detention Pond 5
 0.034 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 292.42' @ 12.89 hrs Surf.Area= 1,059 sf Storage= 344 cf Flood Elev= 294.70' Surf.Area= 3,005 sf Storage= 4,497 cf

Plug-Flow detention time= 41.9 min calculated for 0.034 af (100% of inflow) Center-of-Mass det. time= 41.4 min (945.7 - 904.2)

Volume	Invert	Avail.	Storage	Storage Description	n	
#1	292.00		4,497 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
292.0 292.5	00	599 1,161	166.3 259.1	0 432	0 432	599 3,742
293.0 294.0		1,569 2,492	280.6 326.1	680 2,013	1,112 3,125	4,675 6,893
294.5	50	3,005	317.9	1,372	4,497	7,343
Device	Routing	Inve	ert Outle	et Devices		
#1	Device 2	292.0	00' 3.00	0 in/hr Exfiltration	over Surface are	a Phase-In= 0.01'
#2	Primary	289.0	00' 12.0	" Round Culvert		
#3	Device 2	293.5	Inlet n= 0 50' 24.0		.00 [°] / 286.86' S= E, smooth interior, fice/Grate C= 0.0	0.0200 '/' Cc= 0.900 Flow Area= 0.79 sf

Primary OutFlow Max=0.07 cfs @ 12.89 hrs HW=292.42' TW=286.37' (Dynamic Tailwater)

-2=Culvert (Passes 0.07 cfs of 6.11 cfs potential flow)

-1=Exfiltration (Exfiltration Controls 0.07 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 3P: Bioretention Pond 2

Inflow Area	a =	0.568 ac, 7	2.55% Imp	ervious, Inflow D	epth > 1.68"	for 2-yr event
Inflow	=	1.07 cfs @	12.09 hrs,	Volume=	0.079 af	-
Outflow	=	0.11 cfs @	12.94 hrs,	Volume=	0.079 af, Atte	en= 89%, Lag= 51.1 min
Primary	=	0.11 cfs @	12.94 hrs,	Volume=	0.079 af	-
Routed	to Pond	8P : Underg	round Dete	ntion Pond 5		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.22'@ 12.94 hrs Surf.Area= 1,615 sf Storage= 1,353 cf Flood Elev= 291.50' Surf.Area= 2,248 sf Storage= 2,860 cf

Plug-Flow detention time= 119.3 min calculated for 0.079 af (100% of inflow) Center-of-Mass det. time= 118.9 min (926.8 - 808.0)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	289.0	0' 2,86	60 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
289.0	00	598	0	0	
290.0	00	1,437	1,018	1,018	
291.0	00	2,248	1,843	2,860	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	286.50'	Inlet / Outlet I	⊃, square edge nvert= 286.50' /	headwall, Ke= 0.500 286.04' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf
#2 #3	Device 1 Device 1	289.00' 290.65'	3.000 in/hr E 24.0" x 24.0"	xfiltration over	Surface area Phase-In= 0.01' Grate C= 0.600

Primary OutFlow Max=0.11 cfs @ 12.94 hrs HW=290.22' TW=286.39' (Dynamic Tailwater) **1=Culvert** (Passes 0.11 cfs of 6.55 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.11 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 4P: Trench Drain #20

Inflow Area =	0.168 ac, 96.70% Impervious, Inflow D	epth > 2.62" for 2-yr event
Inflow =	0.47 cfs @ 12.08 hrs, Volume=	0.037 af
Outflow =	0.47 cfs @12.08 hrs, Volume=	0.037 af, Atten= 0%, Lag= 0.0 min
Primary =	0.47 cfs @12.08 hrs, Volume=	0.037 af
Routed to Pon	d 3P : Bioretention Pond 2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.79' @ 12.08 hrs Flood Elev= 294.00'

21	052	61A	-POS	ST (
----	-----	-----	------	------

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	290.45'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 290.45' / 290.00' S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.47 cfs @ 12.08 hrs HW=290.79' TW=289.71' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.47 cfs @ 1.99 fps)

Summary for Pond 5P: Bioretention Pond 3

Inflow Area	a =	0.555 ac, 5	54.89% Impervious,	Inflow Depth > 1.1	28" for 2-yr event
Inflow	=	0.82 cfs @	12.09 hrs, Volume	e= 0.059 af	-
Outflow	=	0.07 cfs @	13.70 hrs, Volume	e= 0.053 af,	Atten= 92%, Lag= 96.2 min
Primary	=	0.07 cfs @	13.70 hrs, Volume	e= 0.053 af	-
Routed to Pond 10P : DMH#31					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.27' @ 13.70 hrs Surf.Area= 964 sf Storage= 1,187 cf Flood Elev= 294.25' Surf.Area= 1,320 sf Storage= 2,022 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 174.7 min (1,017.5 - 842.7)

Volume	Inve	ert Avai	I.Storage	Storage Descripti	on		
#1	291.0)0'	2,022 cf	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
291.0 291.5)0 50	185 302	54.6 84.9	0 121 197	0 121 207	185 523	
292.0 293.0 294.0	00	450 849 1,320	108.1 153.3 148.3	187 639 1,076	307 946 2,022	883 1,832 2,025	
Device	Routing	In	vert Outl	et Devices			
#1	Primary		L= 9 Inlet n= 0	.013 Corrugated F	edge headwall, K 8.50' / 287.15' S PE, smooth interio	= 0.0150 '/' Cc= 0.900 r, Flow Area= 1.23 sf)
#2 #3	Primary Device 1		.35' 24.0	0 in/hr Exfiltration " x 24.0" Horiz. O ted to weir flow at l	rifice/Grate C= 0		

Primary OutFlow Max=0.07 cfs @ 13.70 hrs HW=293.27' TW=286.54' (Dynamic Tailwater) **1=Culvert** (Passes 0.00 cfs of 11.45 cfs potential flow) **3=Orifice/Grate** (Controls 0.00 cfs)

-2=Exfiltration (Exfiltration Controls 0.07 cfs)

Summary for Pond 6P: Trench Drain #40

 Inflow Area =
 0.602 ac, 89.60% Impervious, Inflow Depth > 2.31" for 2-yr event

 Inflow =
 1.57 cfs @
 12.08 hrs, Volume=
 0.116 af

 Outflow =
 1.57 cfs @
 12.08 hrs, Volume=
 0.116 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.57 cfs @
 12.08 hrs, Volume=
 0.116 af

 Routed to Pond 7P : Bioretention Pond 4
 0.116 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.29' @ 12.09 hrs Flood Elev= 291.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	289.56'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 289.56' / 289.40' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.56 cfs @ 12.08 hrs HW=290.29' TW=288.52' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.56 cfs @ 3.56 fps)

Summary for Pond 7P: Bioretention Pond 4

Inflow Are	a =	0.689 ac, 7	8.24% Impervious,	Inflow Depth > 2.07'	' for 2-yr event
Inflow	=	1.60 cfs @	12.09 hrs, Volume	= 0.119 af	
Outflow	=	0.16 cfs @	12.88 hrs, Volume	= 0.119 af, A	tten= 90%, Lag= 47.7 min
Primary	=	0.16 cfs @	12.88 hrs, Volume	= 0.119 af	
Routed to Pond 8P : Underground Detention Pond 5					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 288.99' @ 12.88 hrs Surf.Area= 2,354 sf Storage= 1,942 cf Flood Elev= 290.25' Surf.Area= 3,198 sf Storage= 4,756 cf

Plug-Flow detention time= 100.0 min calculated for 0.119 af (100% of inflow) Center-of-Mass det. time= 99.7 min (892.1 - 792.4)

Volume	Inv	ert Avail.Sto	orage Storage [Description	
#1	288.0	00' 4,7	56 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
288.0	0	1,583	0	0	
289.0	0	2,365	1,974	1,974	
290.0	0	3,198	2,782	4,756	
Device	Routing	Invert	Outlet Devices	i	
#1	Primary	285.50'	12.0" Round	Culvert	
					headwall, Ke= 0.500
					285.35' S= 0.0075 '/' Cc= 0.900 Nooth interior, Flow Area= 0.79 sf
#2	Device 1	288.00'			Surface area Phase-In= 0.01'

2105261A-POST	Type III 24-hr 2-yr Rainfall=2.96"
Prepared by Keach-Nordstrom Associates, Inc	Printed 2/19/2024
HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LL	C Page 18

#3 Device 1 289.35' 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.16 cfs @ 12.88 hrs HW=288.99' TW=286.37' (Dynamic Tailwater)

-**1=Culvert** (Passes 0.16 cfs of 6.12 cfs potential flow)

-2=Exfiltration (Exfiltration Controls 0.16 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 8P: Underground Detention Pond 5

Inflow Are	a =	2.101 ac, 52.26% Impervious, Inflow Depth > 1.33" for 2-yr event
Inflow	=	0.35 cfs @ 12.90 hrs, Volume= 0.233 af
Outflow	=	0.26 cfs @ 17.19 hrs, Volume= 0.124 af, Atten= 26%, Lag= 257.3 min
Primary	=	0.26 cfs @ 17.19 hrs, Volume= 0.124 af
Routed	I to Pon	1 P : Culvert to South Street Drainage

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 287.35' @ 17.19 hrs Surf.Area= 3,661 sf Storage= 5,174 cf Flood Elev= 290.40' Storage= 11,458 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 124.5 min (1,036.3 - 911.8)

Volume	Invert	Avail.Stora	age Storage Description
#1	285.25'	11,458	8 cf ADS N-12 48" @ 220.00' L x 4 Inside= 47.7"W x 47.7"H => 12.40 sf x 220.00'L = 2,728.0 cf Outside= 54.0"W x 54.0"H => 14.85 sf x 220.00'L = 3,266.8 cf 4 Chambers in 4 Rows 22.00' Header x 12.40 sf x 2 = 545.6 cf Inside
Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 285.25' / 284.75' S= 0.0083 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	285.25'	2.5" W x 0.5" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1		24.0" W x 3.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1		4.0' long x 1.00' rise Sharp-Crested Rectangular Weir 2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=0.26 cfs @ 17.19 hrs HW=287.35' TW=284.80' (Dynamic Tailwater) -1=Culvert (Passes 0.26 cfs of 4.33 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.06 cfs @ 6.94 fps) -3=Orifice/Grate (Orifice Controls 0.20 cfs @ 1.01 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 10P: DMH#31

Inflow Area =3.702 ac,8.23% Impervious, Inflow Depth >0.37" for 2-yr eventInflow =0.33 cfs @12.53 hrs, Volume=0.114 afOutflow =0.33 cfs @12.53 hrs, Volume=0.114 af, Atten= 0%, Lag= 0.0 minPrimary =0.33 cfs @12.53 hrs, Volume=0.114 afRouted to Pond 1P : Culvert to South Street Drainage0.114 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 286.61' @ 12.53 hrs Flood Elev= 298.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	286.35'	15.0" Round Culvert L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 286.35' / 285.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.33 cfs @ 12.53 hrs HW=286.61' TW=284.95' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.33 cfs @ 1.74 fps)

Summary for Pond 11P: AD#33

Inflow Area =	3.147 ac,	0.00% Impervious, Inflow	/ Depth > 0.23"	for 2-yr event
Inflow =	0.26 cfs @	12.52 hrs, Volume=	0.061 af	-
Outflow =	0.26 cfs @	12.52 hrs, Volume=	0.061 af, Atte	en= 0%, Lag= 0.0 min
Primary =	0.26 cfs @	12.52 hrs, Volume=	0.061 af	-
Routed to Po	nd 12P : DMH	#34		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 308.23' @ 12.52 hrs Flood Elev= 313.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	308.00'	15.0" Round Culvert L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 308.00' / 304.72' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.26 cfs @ 12.52 hrs HW=308.23' TW=303.03' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.26 cfs @ 1.65 fps)

Summary for Pond 12P: DMH#34

Inflow Area =	3.147 ac,	0.00% Impervious, Inflow D	epth > 0.23" for 2-yr event					
Inflow =	0.26 cfs @	12.52 hrs, Volume=	0.061 af					
Outflow =	0.26 cfs @	12.52 hrs, Volume=	0.061 af, Atten= 0%, Lag= 0.0 min					
Primary =	0.26 cfs @	12.52 hrs, Volume=	0.061 af					
Routed to Pond 10P : DMH#31								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POST

Peak Elev= 303.03' @ 12.52 hrs

Prepared by Keach-Nordstrom Associates, Inc

Flood Elev= 318.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	302.80'	15.0" Round Culvert
			L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 302.80' / 292.00' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.26 cfs @ 12.52 hrs HW=303.03' TW=286.61' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.26 cfs @ 1.65 fps)

Summary for Link A: South Street Drainage to Great Brook

Inflow Area =	11.778 ac, 14.37% Impervio	us, Inflow Depth > 0.37"	for 2-yr event
Inflow =	0.98 cfs @ 12.50 hrs, Volu	ime= 0.367 af	
Primary =	0.98 cfs @ 12.50 hrs, Volu	ıme= 0.367 af, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.013 ac,	0.00% Impervious, Inflow	Depth > 0.35"	for 2-yr event
Inflow =	0.00 cfs @	12.14 hrs, Volume=	0.000 af	-
Primary =	0.00 cfs @	12.14 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POST Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC	e III 24-hr 10-yr Rainfall=4.41" Printed 2/19/2024 Page 21
Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 p Runoff by SCS TR-20 method, UH=SCS, Weigh Reach routing by Dyn-Stor-Ind method . Pond routing by D	ted-CN
Subcatchment1S: On & Off Site Flow Runoff Area=260,268 sf 4.859 Flow Length=1,333' Tc=17.5 min	6 Impervious Runoff Depth>0.85" CN=58 Runoff=3.39 cfs 0.426 af
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=570 sf 0.009 Flow Length=53' Slope=0.2500 '/' Tc=6.0 min	
	6 Impervious Runoff Depth>1.27" CN=65 Runoff=1.07 cfs 0.089 af
	6 Impervious Runoff Depth>2.47" CN=81 Runoff=1.16 cfs 0.082 af
Subcatchment5S: Flow to Trench Drain #20 Runoff Area=7,328 sf 96.709 Flow Length=81' Tc=6.0 min	6 Impervious Runoff Depth>4.06" CN=97 Runoff=0.72 cfs 0.057 af
	6 Impervious Runoff Depth>2.47" CN=81 Runoff=1.61 cfs 0.114 af
	6 Impervious Runoff Depth>3.72" CN=94 Runoff=2.46 cfs 0.187 af
	6 Impervious Runoff Depth>1.21" CN=64 Runoff=0.11 cfs 0.009 af
Subcatchment9S: On & Off Site Flow Runoff Area=137,078 sf 0.009 Flow Length=1,012' Tc=18.7 min	6 Impervious Runoff Depth>0.80" CN=57 Runoff=1.58 cfs 0.210 af
Pond 1P: Culvert to South Street DrainagePeak ElevePrimary=5.74 cfs1.045 afSecondary=0.00 cfs0.	=286.05' Inflow=5.74 cfs 1.045 af 000 af Outflow=5.74 cfs 1.045 af
Pond 2P: Bioretention Pond 1 Peak Elev=293.22' Storage=	1,484 cf Inflow=1.07 cfs 0.089 af Outflow=0.12 cfs 0.089 af
Pond 3P: Bioretention Pond 2 Peak Elev=290.72' Storage=	2,262 cf Inflow=1.87 cfs 0.139 af Outflow=0.63 cfs 0.136 af
Pond 4P: Trench Drain #20 Peak Eleven 12.0" Round Culvert n=0.013 L=15.0' S=0.0	=290.88' Inflow=0.72 cfs 0.057 af)300 '/' Outflow=0.72 cfs 0.057 af
Pond 5P: Bioretention Pond 3 Peak Elev=293.48' Storage=	1,400 cf Inflow=1.61 cfs 0.114 af Outflow=1.24 cfs 0.102 af
Pond 6P: Trench Drain #40 Peak Eleven 12.0" Round Culvert n=0.013 L=8.0' S=0.0	=290.55' Inflow=2.46 cfs 0.187 af)200 '/' Outflow=2.46 cfs 0.187 af
Pond 7P: Bioretention Pond 4 Peak Elev=289.43' Storage=	3,067 cf Inflow=2.57 cfs 0.195 af Outflow=0.78 cfs 0.195 af

2105261A-POST Prepared by Keach-Nordstron HydroCAD® 10.20-2g s/n 01045		<i>hr 10-yr Rainfall=4.41"</i> Printed 2/19/2024 Page 22
Pond 8P: Underground Detent	tion Pond 5 Peak Elev=287.40' Storage=5,361 c	f Inflow=1.51 cfs 0.421 af Outflow=0.43 cfs 0.307 af
Pond 10P: DMH#31		5' Inflow=2.34 cfs 0.312 af
1	5.0" Round Culvert n=0.013 L=135.0' S=0.0100 '/'	Outflow=2.34 cfs 0.312 af
Pond 11P: AD#33	Peak Elev=308.61	' Inflow=1.58 cfs 0.210 af
	15.0" Round Culvert n=0.013 L=41.0' S=0.0800 '/'	Outflow=1.58 cfs 0.210 af
Pond 12P: DMH#34	Peak Elev=303.41	' Inflow=1.58 cfs 0.210 af
1	5.0" Round Culvert n=0.013 L=135.0' S=0.0800 '/'	Outflow=1.58 cfs 0.210 af
Link A: South Street Drainage	to Great Brook	Inflow=5.74 cfs 1.045 af
		Primary=5.74 cfs 1.045 af
Link B: Nathaniel Dr Catch Ba	sin	Inflow=0.01 cfs 0.001 af Primary=0.01 cfs 0.001 af
Total Runoff Ar	rea = 11.792 ac Runoff Volume = 1.175 af Ave	erage Runoff Depth = 1.20

Total Runoff Area = 11.792 acRunoff Volume = 1.175 afAverage Runoff Depth = 1.20"85.65% Pervious = 10.099 ac14.35% Impervious = 1.692 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	3.39 cfs @	12.29 hrs,	Volume=	0.426 af,	Depth> 0.85"
Routed	I to Pond	1 1P : Culvert	to South S	treet Drainage		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

A	rea (sf)	CN E	escription						
	8,992	98 F	98 Paved parking, HSG A						
	3,620	98 F	aved park	ing, HSG E	3				
	10,053	39 >	75% Gras	s cover, Go	bod, HSG A				
	11,033			,	bod, HSG B				
2	11,534		,	od, HSG B					
	15,036	70 V	Voods, Go	od, HSG C					
2	60,268		Veighted A	0					
2	47,656	-		vious Area					
	12,612	4	.85% Impe	ervious Are	а				
Та	Longth	01	Valasity	0	Description				
Tc (min)	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)					
			•	• •	Sheet Flow,				
<u>(min)</u> 6.7	(feet) 50	(ft/ft) 0.1000	(ft/sec) 0.12	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96"				
(min)	(feet)	(ft/ft)	(ft/sec)	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow,				
(min) 6.7 8.8	(feet) 50 986	(ft/ft) 0.1000 0.1400	(ft/sec) 0.12 1.87	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
<u>(min)</u> 6.7	(feet) 50	(ft/ft) 0.1000	(ft/sec) 0.12	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,				
(min) 6.7 8.8	(feet) 50 986	(ft/ft) 0.1000 0.1400	(ft/sec) 0.12 1.87	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff = 0.01 cfs @ 12.10 hrs, Volume= 0.001 af, Depth> 1.03" Routed to Link B : Nathaniel Dr Catch Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

A	rea (sf)	CN E	Description		
	570	61 >	75% Gras	s cover, Go	od, HSG B
	570	1	00.00% Pe	ervious Area	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.1	50	0.2500	0.39		Sheet Flow,
0.0	3	0.2500	3.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
2.1	53	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3S: Flow to Bioretention Pond 1

Runoff = 1.07 cfs @ 12.13 hrs, Volume= 0.089 af, Depth> 1.27" Routed to Pond 2P : Bioretention Pond 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

A	vrea (sf)	CN E	Description					
	1,782	98 F	98 Roofs, HSG B					
	4,630	98 F	1 07					
	13,628	61 >	>75% Grass cover, Good, HSG B					
	16,751	55 V	55 Woods, Good, HSG B					
	36,791	65 V	Veighted A	verage				
	30,379	8	2.57% Pei	rvious Area				
	6,412	1	7.43% Imp	pervious Ar	ea			
_				_				
Tc	5	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.9	50	0.1400	0.14		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.96"			
2.3	271	0.1587	1.99		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.2	59	0.3500	4.14		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
8.4	380	Total						

Summary for Subcatchment 4S: Flow to Bioretention Pond 2

Runoff = 1.16 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Bioretention Pond 2 0.082 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

Are	ea (sf)	CN [Description					
	2,308	98 F	Paved park	ing, HSG A	١			
	8,548	98 F	Paved park	ing, HSG B	3			
	2,217	39 >	>75% Gras	s cover, Go	ood, HSG A			
	4,330	61 >	>75% Gras	s cover, Go	ood, HSG B			
1	7,403	81 V	Neighted A	verage				
	6,547	3	37.62% Per	vious Area				
1	0,856	6	32.38% Imp	pervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.9	20	0.0050	0.07		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 2.96"	
4.9	20	Total,	Increased t	o minimum	1 Tc = 6.0 min			

Summary for Subcatchment 5S: Flow to Trench Drain #20

Runoff = 0.72 cfs @ 12.08 hrs, Volume= 0.057 af, Depth> 4.06" Routed to Pond 4P : Trench Drain #20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

	A	rea (sf)	CN E	Description						
		1,583	98 Roofs, HSG B							
		242	61 >75% Grass cover, Good, HSG B							
		5,503	98 Paved parking, HSG B							
		7,328	97 Weighted Average							
	242 3.30% Pervious Area									
	7,086 96.70% Impervious Area									
	Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	2.3	11	0.0100	0.08		Sheet Flow,				
						Grass: Short n= 0.150 P2= 2.96"				
	0.4	70	0.0200	2.87		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
	2.7	81	Total, Increased to minimum Tc = 6.0 min							

Summary for Subcatchment 6S: Flow to Bioretention Pond 3

Runoff = 1.61 cfs @ 12.09 hrs, Volume= Routed to Pond 5P : Bioretention Pond 3 0.114 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

Are	ea (sf)	CN D	escription				
	1,754	98 R	oofs, HSC	в			
1	1,522	98 P	aved park	ing, HSG B			
10,912 61 >75% Grass cover, Good, HSG B							
24,188 81 Weighted Average							
1	0,912	45.11% Pervious Area					
1	3,276	54.89% Impervious Area					
Tc I	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
3.7	20	0.0100	0.09		Sheet Flow,		
					Grass: Short n= 0.150 P2= 2.96"		
0.2	40	0.0200	2.87		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
3.9	60	Total, Increased to minimum Tc = 6.0 min					
		,					

Summary for Subcatchment 7S: Flow to Trench Drain #40

Runoff = 2.46 cfs @ 12.08 hrs, Volume= 0.187 af, Depth> 3.72" Routed to Pond 6P : Trench Drain #40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

A	rea (sf)	CN E	Description				
	21,923	98 F	aved park	ing, HSG B	3		
	394	74 >	·75% Ġras	s cover, Go	bod, HSG C		
	1,557	98 F	Roofs, HSG	ЪВ			
	2,143	61 >	75% Gras	s cover, Go	bod, HSG B		
	187	74 >	75% Gras	s cover, Go	bod, HSG C		
	26,204	94 V	94 Weighted Average				
	2,724	1	0.40% Per	vious Area	l		
	23,480	8	9.60% Imp	pervious Ar	ea		
_							
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
3.4	50	0.0800	0.25		Sheet Flow,		
					Grass: Short n= 0.150 P2= 2.96"		
0.5	19	0.0100	0.70		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
0.6	100	0.0200	2.87		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
4.5	169	Total, I	ncreased t	o minimum	n Tc = 6.0 min		

Summary for Subcatchment 8S: Flow to Bioretention 4

Runoff = 0.11 cfs @ 12.10 hrs, Volume= 0.009 af, Depth> 1.21" Routed to Pond 7P : Bioretention Pond 4

A	rea (sf)	CN	Description						
	2,812	61	61 >75% Grass cover, Good, HSG B						
	996	74	74 >75% Grass cover, Good, HSG C						
	3,808	64	64 Weighted Average						
	3,808		100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
0.6	10	0.2500	0.28		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 2.96"		
0.6	10	Total,	Increased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment 9S: On & Off Site Flow

Runoff = 1.58 cfs @ 12.32 hrs, Volume= 0.210 af, Depth> 0.80" Routed to Pond 11P : AD#33

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.41"

A	rea (sf)	CN [Description					
	6,611	61 >	61 >75% Grass cover, Good, HSG B					
	,		,	·				
	11,266	77 \	Noods, Go	od, HSG D				
	,							
1	37,078		100.00% P	ervious Are	a			
Тс	Longth	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description			
6.7	50	0.1000	0.12		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.96"			
7.4	803	0.1300	1.80		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.1	25	0.2800	3.70		Shallow Concentrated Flow,			
4 5	40.4	0 0050	0.40		Short Grass Pasture Kv= 7.0 fps			
4.5	134	0.0050	0.49		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
	1 1 Tc (min) 6.7	119,201 11,266 137,078 137,078 137,078 Tc Length (feet) 6.7 50 7.4 803 0.1 25 4.5 134	6,611 61 119,201 55 11,266 77 137,078 57 137,078 57 Tc Length (feet) (ft/ft) 6.7 50 0.1000 7.4 803 0.1300 0.1 25 4.5 134	6,611 61 >75% Gras 119,201 55 Woods, Go 11,266 77 Woods, Go 137,078 57 Weighted A 137,078 100.00% Pe Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 6.7 50 0.1000 0.12 7.4 803 0.1300 1.80 0.1 25 0.2800 3.70 4.5 134 0.0050 0.49	6,611 61 >75% Grass cover, Go 119,201 55 Woods, Good, HSG B 11,266 77 Woods, Good, HSG D 137,078 57 Weighted Average 137,078 57 Weighted Average 137,078 100.00% Pervious Are Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 6.7 50 0.1000 0.12 7.4 803 0.1300 1.80 0.1 25 0.2800 3.70 4.5 134 0.0050 0.49			

18.7 1,012 Total

Summary for Pond 1P: Culvert to South Street Drainage

Inflow Area =	11.778 ac, 14.37% Impervious, Inflow D	Depth > 1.06" for 10-yr event			
Inflow =	5.74 cfs @ 12.29 hrs, Volume=	1.045 af			
Outflow =	5.74 cfs @ 12.29 hrs, Volume=	1.045 af, Atten= 0%, Lag= 0.0 min			
Primary =	5.74 cfs @ 12.29 hrs, Volume=	1.045 af			
Routed to L	ink A : South Street Drainage to Great Brook				
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af			
Routed to Link A : South Street Drainage to Great Brook					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 286.05' @ 12.29 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
			L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.50'	20.0' long x 1.00' rise Sharp-Crested Rectangular Weir X 2.00
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=5.74 cfs @ 12.29 hrs HW=286.05' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.74 cfs @ 4.67 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.48' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2P: Bioretention Pond 1

Page 28

Inflow Area = 0.845 ac, 17.43% Impervious, Inflow Depth > 1.27" for 10-yr event Inflow = 1.07 cfs @ 12.13 hrs, Volume= 0.089 af 0.12 cfs @ 13.55 hrs, Volume= Outflow 0.089 af, Atten= 89%, Lag= 85.0 min = Primary = 0.12 cfs @ 13.55 hrs, Volume= 0.089 af Routed to Pond 8P : Underground Detention Pond 5

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.22' @ 13.55 hrs Surf.Area= 1,757 sf Storage= 1,484 cf Flood Elev= 294.70' Surf.Area= 3,005 sf Storage= 4,497 cf

Plug-Flow detention time= 139.8 min calculated for 0.089 af (100% of inflow) Center-of-Mass det. time= 139.3 min (1,009.3 - 870.0)

Volume	Invert	. Avail	.Storage	Storage Description	า			
#1	292.00	I	4,497 cf	Custom Stage Dat	ta (Irregular) Listed	d below (Recalc)		
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>		
292.0	00	599	166.3	0	0	599		
292.5	50	1,161	259.1	432	432	3,742		
293.0	00	1,569	280.6	680	1,112	4,675		
294.0	00	2,492	326.1	2,013	3,125	6,893		
294.5	50	3,005	317.9	1,372	4,497	7,343		
Device	Routing	Inv	vert Outle	et Devices				
#1	Device 2	292.	00' 3.00	0 in/hr Exfiltration	over Surface area	a Phase-In= 0.01'		
#2	Primary	289.	00' 12.0	12.0" Round Culvert				
#3	Device 2	L= 10 Inlet n= 0. 2 293.50' 24.0 '		07.0' CPP, square / Outlet Invert= 289 .013 Corrugated PE " x 24.0" Horiz. Ori ted to weir flow at low	.00 [°] / 286.86' S= (E, smooth interior, fice/Grate C= 0.6	0.0200 '/' Cc= 0.900 Flow Area= 0.79 sf		

Primary OutFlow Max=0.12 cfs @ 13.55 hrs HW=293.22' TW=287.34' (Dynamic Tailwater) -2=Culvert (Passes 0.12 cfs of 6.62 cfs potential flow)

-1=Exfiltration (Exfiltration Controls 0.12 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 3P: Bioretention Pond 2

Inflow Area	=	0.568 ac, 7	2.55% Imp	ervious, Infl	ow Depth >	> 2.94"	for 10-yr event	
Inflow :	=	1.87 cfs @	12.09 hrs,	Volume=	0.13	9 af	•	
•••••••	=	0.63 cfs @	12.39 hrs,	Volume=	0.13	6 af, Atte	en= 67%, Lag= 1	8.1 min
Primary =	=	0.63 cfs @	12.39 hrs,	Volume=	0.13	6 af		
Routed t	o Pond	l 8P : Underg	round Dete	ntion Pond	5			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs								
Peak Elev= 290.72' @ 12.39 hrs Surf.Area= 2,021 sf Storage= 2,262 cf								

Flood Elev= 291.50' Surf.Area= 2,248 sf Storage= 2,860 cf

Plug-Flow detention time= 153.5 min calculated for 0.136 af (98% of inflow) Center-of-Mass det. time= 141.3 min (938.1 - 796.9)

Volume	Inve	ert Avail.Sto	rage Storage	Description		
#1	289.0	00' 2,86	60 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
289.0		598	0	0		
290.0	00	1,437	1,018	1,018		
291.0	00	2,248	1,843	2,860		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	286.50'	Inlet / Outlet	P, square edge Invert= 286.50' /	headwall, Ke= 0.500 286.04' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf	
#2 #3	Device 1 Device 1	289.00' 290.65'	 3.000 in/hr Exfiltration over Surface area Phase-In= 0.01' 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 			

Primary OutFlow Max=0.62 cfs @ 12.39 hrs HW=290.72' TW=286.58' (Dynamic Tailwater) 1=Culvert (Passes 0.62 cfs of 7.05 cfs potential flow) 2=Exfiltration (Exfiltration Controls 0.14 cfs)

-3=Orifice/Grate (Weir Controls 0.48 cfs @ 0.86 fps)

Summary for Pond 4P: Trench Drain #20

Inflow Area =	0.168 ac, 96.70% Impervious, Inflow D	epth > 4.06" for 10-yr event			
Inflow =	0.72 cfs @ 12.08 hrs, Volume=	0.057 af			
Outflow =	0.72 cfs @12.08 hrs, Volume=	0.057 af, Atten= 0%, Lag= 0.0 min			
Primary =	0.72 cfs @12.08 hrs, Volume=	0.057 af			
Routed to Pond 3P : Bioretention Pond 2					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.88' @ 12.08 hrs Flood Elev= 294.00' 2105261A-POST

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	290.45'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 290.45' / 290.00' S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.71 cfs @ 12.08 hrs HW=290.88' TW=290.23' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.71 cfs @ 2.23 fps)

Summary for Pond 5P: Bioretention Pond 3

Inflow Area =	0.555 ac, 54	4.89% Impervious, Inf	low Depth > 2.47" for 10-yr event		
Inflow =	1.61 cfs @	12.09 hrs, Volume=	0.114 af		
Outflow =	1.24 cfs @	12.16 hrs, Volume=	0.102 af, Atten= 23%, Lag= 4.2 m	in	
Primary =	1.24 cfs @	12.16 hrs, Volume=	0.102 af		
Routed to Pond 10P : DMH#31					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.48'@ 12.16 hrs Surf.Area= 1,060 sf Storage= 1,400 cf Flood Elev= 294.25' Surf.Area= 1,320 sf Storage= 2,022 cf

Plug-Flow detention time= 148.1 min	calculated for 0.102 af (90% of inflow)
Center-of-Mass det. time= 99.0 min ((922.8 - 823.8)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	291.0	00'	2,022 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
291.0 291.5		185 302	54.6 84.9	0	0 121	185 523	
292.0	00	450	108.1	187	307	883	
293.0 294.0		849 1,320	153.3 148.3	639 1,076	946 2,022	1,832 2,025	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	288	L= 9 Inlet		8.50'/287.15' S	(e= 0.500 = 0.0150 '/' Cc= 0.900 r, Flow Area= 1.23 sf	
#2 #3	Primary Device 1		.00' 3.00 .35' 24.0	0 in/hr Exfiltration " x 24.0" Horiz. O ted to weir flow at I	n over Surface ar rifice/Grate C= 0	ea	

Primary OutFlow Max=1.24 cfs @ 12.16 hrs HW=293.48' TW=287.08' (Dynamic Tailwater) -1=Culvert (Passes 1.17 cfs of 11.70 cfs potential flow) -3=Orifice/Grate (Weir Controls 1.17 cfs @ 1.16 fps)

-2=Exfiltration (Exfiltration Controls 0.07 cfs)

Summary for Pond 6P: Trench Drain #40

 Inflow Area =
 0.602 ac, 89.60% Impervious, Inflow Depth > 3.72" for 10-yr event

 Inflow =
 2.46 cfs @
 12.08 hrs, Volume=
 0.187 af

 Outflow =
 2.46 cfs @
 12.08 hrs, Volume=
 0.187 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.46 cfs @
 12.08 hrs, Volume=
 0.187 af

 Routed to Pond 7P : Bioretention Pond 4
 0.187 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.55' @ 12.08 hrs Flood Elev= 291.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	289.56'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 289.56' / 289.40' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.45 cfs @ 12.08 hrs HW=290.55' TW=288.94' (Dynamic Tailwater) -1=Culvert (Barrel Controls 2.45 cfs @ 3.93 fps)

Summary for Pond 7P: Bioretention Pond 4

Inflow Area =	0.689 ac, 7	78.24% Impervious, Infl	ow Depth > 3.40" for 10-yr event
Inflow =	2.57 cfs @	12.08 hrs, Volume=	0.195 af
Outflow =	0.78 cfs @	12.41 hrs, Volume=	0.195 af, Atten= 70%, Lag= 19.4 min
Primary =	0.78 cfs @	12.41 hrs, Volume=	0.195 af
Routed to P	ond 8P : Underg	round Detention Pond	5

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 289.43' @ 12.41 hrs Surf.Area= 2,723 sf Storage= 3,067 cf Flood Elev= 290.25' Surf.Area= 3,198 sf Storage= 4,756 cf

Plug-Flow detention time= 131.0 min calculated for 0.195 af (100% of inflow) Center-of-Mass det. time= 130.7 min (911.5 - 780.8)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	288.00)' 4,7	56 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatior (feet		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
288.00)	1,583	0	0	
289.00)	2,365	1,974	1,974	
290.00)	3,198	2,782	4,756	
Device	Routing	Invert	Outlet Devices	5	
#1	Primary	285.50'	12.0" Round	Culvert	
			Inlet / Outlet Ir n= 0.013 Corr	nvert= 285.50' / rugated PE, sm	headwall, Ke= 0.500 285.35' S= 0.0075 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf
#2	Device 1	288.00'	3.000 in/hr Ex	filtration over	Surface area Phase-In= 0.01'

2105261A-POST	Type III 24-hr	10-yr Rainfall=4.41"
Prepared by Keach-Nordstrom Associates, Inc		Printed 2/19/2024
HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LI	LC	Page 32

#3 Device 1 289.35' **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.77 cfs @ 12.41 hrs HW=289.43' TW=286.61' (Dynamic Tailwater)

1=Culvert (Passes 0.77 cfs of 6.35 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.19 cfs)

-3=Orifice/Grate (Weir Controls 0.58 cfs @ 0.92 fps)

Summary for Pond 8P: Underground Detention Pond 5

Inflow Area =2.101 ac, 52.26% Impervious, Inflow Depth > 2.40" for 10-yr eventInflow =1.51 cfs @12.40 hrs, Volume=0.421 afOutflow =0.43 cfs @14.73 hrs, Volume=0.307 af, Atten= 71%, Lag= 139.6 minPrimary =0.43 cfs @14.73 hrs, Volume=0.307 afRouted to Pond 1P : Culvert to South Street Drainage0.307 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 287.40' @ 14.73 hrs Surf.Area= 3,667 sf Storage= 5,361 cf Flood Elev= 290.40' Storage= 11,458 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 98.4 min (1,039.3 - 940.9)

Volume	Invert	Avail.Stor	age	Storage Description
#1	285.25'	11,45	58 cf	ADS N-12 48" @ 220.00' L x 4 Inside= 47.7"W x 47.7"H => 12.40 sf x 220.00'L = 2,728.0 cf Outside= 54.0"W x 54.0"H => 14.85 sf x 220.00'L = 3,266.8 cf 4 Chambers in 4 Rows 22.00' Header x 12.40 sf x 2 = 545.6 cf Inside
Device	Routing	Invert	Outl	et Devices
#1	Primary	285.25'		" Round Culvert
			Inlet	60.0' CPP, square edge headwall, Ke= 0.500 : / Outlet Invert= 285.25' / 284.75' S= 0.0083 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	285.25'	-	W x 0.5" H Vert. Orifice/Grate C= 0.600 ted to weir flow at low heads
#3	Device 1	287.25'	24.0	W x 3.0" H Vert. Orifice/Grate C= 0.600 ted to weir flow at low heads
#4	Device 1	289.00'	4.0'	long x 1.00' rise Sharp-Crested Rectangular Weir and Contraction(s) 1.0' Crest Height

Primary OutFlow Max=0.43 cfs @ 14.73 hrs HW=287.40' TW=285.01' (Dynamic Tailwater) **1=Culvert** (Passes 0.43 cfs of 4.40 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.06 cfs @ 7.03 fps)

-3=Orifice/Grate (Orifice Controls 0.37 cfs @ 1.24 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 10P: DMH#31

Inflow Area =3.702 ac,8.23% Impervious, Inflow Depth >1.01" for 10-yr eventInflow =2.34 cfs @12.27 hrs, Volume=0.312 afOutflow =2.34 cfs @12.27 hrs, Volume=0.312 af, Atten= 0%, Lag= 0.0 minPrimary =2.34 cfs @12.27 hrs, Volume=0.312 afRouted to Pond 1P : Culvert to South Street Drainage0.312 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 287.16' @ 12.29 hrs Flood Elev= 298.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	286.35'	15.0" Round Culvert L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 286.35' / 285.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.31 cfs @ 12.27 hrs HW=287.16' TW=286.04' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.31 cfs @ 3.91 fps)

Summary for Pond 11P: AD#33

Inflow Area =	3.147 ac,	0.00% Impervious, Inflow	/ Depth > 0.80" for 10-yr event	
Inflow =	1.58 cfs @	12.32 hrs, Volume=	0.210 af	
Outflow =	1.58 cfs @	12.32 hrs, Volume=	0.210 af, Atten= 0%, Lag= 0.0 min	
Primary =	1.58 cfs @	12.32 hrs, Volume=	0.210 af	
Routed to Pond 12P : DMH#34				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 308.61' @ 12.32 hrs Flood Elev= 313.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	308.00'	15.0" Round Culvert L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 308.00' / 304.72' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.58 cfs @ 12.32 hrs HW=308.61' TW=303.41' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.58 cfs @ 2.66 fps)

Summary for Pond 12P: DMH#34

 Inflow Area =
 3.147 ac, 0.00% Impervious, Inflow Depth > 0.80" for 10-yr event

 Inflow =
 1.58 cfs @
 12.32 hrs, Volume=
 0.210 af

 Outflow =
 1.58 cfs @
 12.32 hrs, Volume=
 0.210 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.58 cfs @
 12.32 hrs, Volume=
 0.210 af

 Routed to Pond 10P : DMH#31
 0.210 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POST

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC

Peak Elev= 303.41' @ 12.32 hrs Flood Elev= 318.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	302.80'	15.0" Round Culvert
			L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 302.80' / 292.00' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.58 cfs @ 12.32 hrs HW=303.41' TW=287.16' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.58 cfs @ 2.66 fps)

Summary for Link A: South Street Drainage to Great Brook

Inflow Area	a =	1.778 ac, 14.37% Impervious, Inflow Depth > 1.06" for 10-yr event	
Inflow	=	5.74 cfs @ 12.29 hrs, Volume= 1.045 af	
Primary	=	5.74 cfs @ 12.29 hrs, Volume= 1.045 af, Atten= 0%, Lag= 0.0 mi	in

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.013 ac,	0.00% Impervious, Inflow I	Depth > 1.03"	for 10-yr event
Inflow =	0.01 cfs @	12.10 hrs, Volume=	0.001 af	-
Primary =	0.01 cfs @	12.10 hrs, Volume=	0.001 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POST Prepared by Keach-Nordstrom Associates, Inc <u>HydroCAD® 10.20-2g_s/n 01045_© 2022</u> HydroCAD Software Solutions LLC	Type III 24-hr 25-yr Rainfall=5.53" Printed 2/19/2024 C Page 35
Time span=0.00-24.00 hrs, dt=0.02 hrs, 12 Runoff by SCS TR-20 method, UH=SCS, We Reach routing by Dyn-Stor-Ind method , Pond routing b	eighted-CN
	.85% Impervious Runoff Depth>1.46" hin CN=58 Runoff=6.55 cfs 0.729 af
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=570 sf 0 Flow Length=53' Slope=0.2500 '/' Tc=6.0 m	
	.43% Impervious Runoff Depth>2.01" hin CN=65 Runoff=1.77 cfs 0.142 af
	.38% Impervious Runoff Depth>3.45" hin CN=81 Runoff=1.61 cfs 0.115 af
Subcatchment5S: Flow to Trench Drain #20 Runoff Area=7,328 sf 96 Flow Length=81' Tc=6.0 n	.70% Impervious Runoff Depth>5.17" hin CN=97 Runoff=0.90 cfs 0.072 af
	.89% Impervious Runoff Depth>3.45" hin CN=81 Runoff=2.24 cfs 0.160 af
	.60% Impervious Runoff Depth>4.83" hin CN=94 Runoff=3.14 cfs 0.242 af
	.00% Impervious Runoff Depth>1.93" hin CN=64 Runoff=0.19 cfs 0.014 af
	.00% Impervious Runoff Depth>1.39" hin CN=57 Runoff=3.14 cfs 0.365 af
Pond 1P: Culvert to South Street Drainage Peak El Primary=10.78 cfs 1.694 af Secondary=0.00 cfs	lev=288.43' Inflow=10.78 cfs 1.694 af 0.000 af Outflow=10.78 cfs 1.694 af
Pond 2P: Bioretention Pond 1Peak Elev=293.57'Stora	age=2,143 cf Inflow=1.77 cfs 0.142 af Outflow=0.62 cfs 0.136 af
Pond 3P: Bioretention Pond 2 Peak Elev=290.80' Storage	age=2,425 cf Inflow=2.52 cfs 0.188 af Outflow=1.65 cfs 0.181 af
Pond 4P: Trench Drain #20 Peak E 12.0" Round Culvert n=0.013 L=15.0' S	Elev=290.97' Inflow=0.90 cfs 0.072 af =0.0300 '/' Outflow=0.90 cfs 0.072 af
Pond 5P: Bioretention Pond 3 Peak Elev=293.54' Store	age=1,465 cf Inflow=2.24 cfs 0.160 af Outflow=2.18 cfs 0.145 af
Pond 6P: Trench Drain #40 Peak B 12.0" Round Culvert n=0.013 L=8.0' S	Elev=290.77' Inflow=3.14 cfs 0.242 af =0.0200 '/' Outflow=3.14 cfs 0.242 af
Pond 7P: Bioretention Pond 4 Peak Elev=289.51' Store	age=3,294 cf Inflow=3.33 cfs 0.256 af Outflow=1.90 cfs 0.256 af

2105261A-POST Prepared by Keach-Nordstrom As <u>HydroCAD® 10.20-2g_s/n 01045_© 202</u>							
Pond 8P: Underground Detention P	ond 5 Peak Elev=287.67' Storage=6,365 cf Inflow=3.63 cfs 0.573 af Outflow=1.35 cfs 0.456 af						
Pond 10P: DMH#31 15.0"	Peak Elev=289.28' Inflow=4.24 cfs 0.509 af Round Culvert n=0.013 L=135.0' S=0.0100 '/' Outflow=4.24 cfs 0.509 af						
Pond 11P: AD#33 15.0"	Peak Elev=308.92' Inflow=3.14 cfs 0.365 af Round Culvert n=0.013 L=41.0' S=0.0800 '/' Outflow=3.14 cfs 0.365 af						
Pond 12P: DMH#34 15.0"	Peak Elev=303.72' Inflow=3.14 cfs 0.365 af Round Culvert n=0.013 L=135.0' S=0.0800 '/' Outflow=3.14 cfs 0.365 af						
Link A: South Street Drainage to Great Brook Inflow=10.78 cfs Primary=10.78 cfs							
Link B: Nathaniel Dr Catch Basin	Inflow=0.02 cfs 0.002 af Primary=0.02 cfs 0.002 af						
Total Runoff Area =	11.792 ac Runoff Volume = 1.840 af Average Runoff Depth = 1.87"						

Total Runoff Area = 11.792 acRunoff Volume = 1.840 afAverage Runoff Depth = 1.87"85.65% Pervious = 10.099 ac14.35% Impervious = 1.692 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	6.55 cfs @	12.27 hrs,	Volume=	0.729 af,	Depth> 1.46"
Routed	I to Pond	1P : Culvert	to South S	treet Drainage		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

A	rea (sf)	CN D	escription							
	8,992	98 P	Paved parking, HSG A							
	3,620	98 P	aved park	ing, HSG E	3					
	10,053	39 >	75% Gras	s cover, Go	bod, HSG A					
	11,033	61 >	75% Gras	s cover, Go	bod, HSG B					
2	11,534		,	od, HSG B						
	15,036	70 V	Voods, Go	od, HSG C						
2	60,268		Veighted A							
2	47,656	9	5.15% Pe	vious Area						
	12,612	4	.85% Impe	ervious Are	а					
–	1		V/-1!+	0	Description					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.7	50	0.1000	0.12		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.96"					
8.8	986	0.1400	1.87		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
2.0	297	0.1200	2.42		Shallow Concentrated Flow,					
2.0	297	0.1200	2.42							

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff = 0.02 cfs @ 12.10 hrs, Volume= 0.002 af, Depth> 1.70" Routed to Link B : Nathaniel Dr Catch Basin

	Ar	rea (sf)	CN E	Description						
		570	61 >	61 >75% Grass cover, Good, HSG B						
		570	1	100.00% Pervious Area						
(r	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	2.1	50	0.2500	0.39		Sheet Flow,				
	0.0	3	0.2500	3.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps				
	2.1	53	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment 3S: Flow to Bioretention Pond 1

Runoff = 1.77 cfs @ 12.13 hrs, Volume= 0.142 af, Depth> 2.01" Routed to Pond 2P : Bioretention Pond 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

A	rea (sf)	CN E	Description						
	1,782	98 F	Roofs, HSG B						
	4,630	98 F	aved park	ing, HSG B	6				
	13,628	61 >	75% Gras	s cover, Go	ood, HSG B				
	16,751	55 V	Voods, Go	od, HSG B					
	36,791	65 V	Veighted A	verage					
	30,379	8	2.57% Per	vious Area					
	6,412	1	7.43% Imp	pervious Ar	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.9	50	0.1400	0.14		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.96"				
2.3	271	0.1587	1.99		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.2	59	0.3500	4.14		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
8.4	380	Total							

Summary for Subcatchment 4S: Flow to Bioretention Pond 2

Runoff = 1.61 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Bioretention Pond 2 0.115 af, Depth> 3.45"

Area (sf)	CN	Description							
2,308	98	Paved park	ing, HSG A	١					
8,548	98	Paved park	ing, HSG E	3					
2,217	39	>75% Gras	s cover, Go	ood, HSG A					
4,330	61	>75% Gras	s cover, Go	ood, HSG B					
17,403	81	Weighted A	verage						
6,547		37.62% Pe	rvious Area	l					
10,856		62.38% Im	pervious Ar	ea					
Tc Length	i Slop	be Velocity	Capacity	Description					
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)						
4.9 20	0.005	50 0.07		Sheet Flow,					
				Grass: Short	n= 0.150	P2= 2.96"			
4.9 20	Total	, Increased	to minimum	n Tc = 6.0 min					

Summary for Subcatchment 5S: Flow to Trench Drain #20

Runoff = 0.90 cfs @ 12.08 hrs, Volume= 0.072 af, Depth> 5.17" Routed to Pond 4P : Trench Drain #20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

A	rea (sf)	CN E	Description							
	1,583	98 F	98 Roofs, HSG B							
	242	61 >	75% Gras	s cover, Go	bod, HSG B					
	5,503	98 F	Paved park	ing, HSG B	}					
	7,328	97 V	Veighted A	verage						
	242	3	30% Perv	ious Area						
	7,086	g	6.70% Imp	pervious Ar	ea					
Тс	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
2.3	11	0.0100	0.08		Sheet Flow,					
					Grass: Short n= 0.150 P2= 2.96"					
0.4	70	0.0200	2.87		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
2.7	81	Total, I	ncreased t	o minimum	1 Tc = 6.0 min					

Summary for Subcatchment 6S: Flow to Bioretention Pond 3

Runoff = 2.24 cfs @ 12.09 hrs, Volume= Routed to Pond 5P : Bioretention Pond 3 0.160 af, Depth> 3.45"

A	rea (sf)	CN D	escription		
	1,754	98 R	oofs, HSC	в	
	11,522	98 P	aved park	ing, HSG B	
	10,912	61 >	75% Gras	s cover, Go	od, HSG B
	24,188	81 W	/eighted A	verage	
	10,912	4	5.11% Per	vious Area	
	13,276	54	4.89% Imp	ervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	20	0.0100	0.09		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.96"
0.2	40	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.9	60	Total, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 7S: Flow to Trench Drain #40

Runoff = 3.14 cfs @ 12.08 hrs, Volume= 0.242 af, Depth> 4.83" Routed to Pond 6P : Trench Drain #40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

A	rea (sf)	CN E	Description							
	21,923	98 F	98 Paved parking, HSG B							
	394	74 >	·75% Ġras	s cover, Go	bod, HSG C					
	1,557	98 F	Roofs, HSG	ЪВ						
	2,143	61 >	75% Gras	s cover, Go	bod, HSG B					
	187	74 >	75% Gras	s cover, Go	bod, HSG C					
	26,204	94 V	Veighted A	verage						
	2,724	1	0.40% Per	vious Area	l					
	23,480	8	9.60% Imp	pervious Ar	ea					
_										
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
3.4	50	0.0800	0.25		Sheet Flow,					
					Grass: Short n= 0.150 P2= 2.96"					
0.5	19	0.0100	0.70		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
0.6	100	0.0200	2.87		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
4.5	169	Total, I	ncreased t	o minimum	n Tc = 6.0 min					

Summary for Subcatchment 8S: Flow to Bioretention 4

Runoff = 0.19 cfs @ 12.10 hrs, Volume= 0.014 af, Depth> 1.93" Routed to Pond 7P : Bioretention Pond 4

A	rea (sf)	CN	CN Description								
	2,812	61	61 >75% Grass cover, Good, HSG B								
	996	74	>75% Gras	s cover, Go	ood, HSG C						
	3,808	64	Weighted A	verage							
	3,808		100.00% Pe	ervious Are	а						
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
0.6	10	0.2500	0.28		Sheet Flow,						
					Grass: Short	n= 0.150	P2= 2.96"				
0.6	10	Total,	Total, Increased to minimum Tc = 6.0 min								

Summary for Subcatchment 9S: On & Off Site Flow

Runoff = 3.14 cfs @ 12.29 hrs, Volume= 0.365 af, Depth> 1.39" Routed to Pond 11P : AD#33

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.53"

A	rea (sf)	CN D	escription						
	6,611	61 >	75% Gras	s cover, Go	ood, HSG B				
1	19,201	55 V							
	11,266	77 V	loods, Go	od, HSG D					
1	37,078	57 V	Veighted A	verage					
1	37,078	1	00.00% Pe	ervious Are	а				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.7	50	0.1000	0.12		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.96"				
7.4	803	0.1300	1.80		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.1	25	0.2800	3.70		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
4.5	134	0.0050	0.49		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
18.7	1,012	Total							

Summary for Pond 1P: Culvert to South Street Drainage

[80] Warning: Exceeded Pond 8P by 1.41' @ 12.24 hrs (2.46 cfs 0.043 af)

Inflow Area = 11.778 ac, 14.37% Impervious, Inflow Depth > 1.73" for 25-yr event Inflow 10.78 cfs @ 12.27 hrs, Volume= = 1.694 af Outflow 10.78 cfs @ 12.27 hrs, Volume= 1.694 af, Atten= 0%, Lag= 0.0 min = Primarv = 10.78 cfs @ 12.27 hrs, Volume= 1.694 af Routed to Link A : South Street Drainage to Great Brook 0.00 cfs @ 0.00 hrs, Volume= Secondary = 0.000 af Routed to Link A : South Street Drainage to Great Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 288.43' @ 12.27 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
			L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.50'	20.0' long x 1.00' rise Sharp-Crested Rectangular Weir X 2.00
	-		2 End Contraction(s) 1.0' Crest Height

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=284.48' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2P: Bioretention Pond 1

 Inflow Area =
 0.845 ac, 17.43% Impervious, Inflow Depth > 2.01" for 25-yr event

 Inflow =
 1.77 cfs @ 12.13 hrs, Volume=
 0.142 af

 Outflow =
 0.62 cfs @ 12.50 hrs, Volume=
 0.136 af, Atten= 65%, Lag= 22.2 min

 Primary =
 0.62 cfs @ 12.50 hrs, Volume=
 0.136 af

 Routed to Pond 8P : Underground Detention Pond 5
 0.136 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.57' @ 12.50 hrs Surf.Area= 2,068 sf Storage= 2,143 cf Flood Elev= 294.70' Surf.Area= 3,005 sf Storage= 4,497 cf

Plug-Flow detention time= 157.5 min calculated for 0.136 af (96% of inflow) Center-of-Mass det. time= 136.4 min (992.3 - 855.9)

Volume	Inver	: Avail.	Storage	Storage Description	n			
#1	292.00	'	4,497 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)		
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store	Mot Area		
				(cubic-feet)	(cubic-feet)	Wet.Area		
(fee	<i>(</i>)	(sq-ft)	(feet)	(Cubic-leet)	(cubic-leet)	<u>(sq-ft)</u>		
292.0	00	599	166.3	0	0	599		
292.5	50	1,161	259.1	432	432	3,742		
293.0	00	1,569	280.6	680	1,112	4,675		
294.0	00	2,492	326.1	2,013	3,125	6,893		
294.5	50	3,005	317.9	1,372	4,497	7,343		
Device	Routing	Inv	ert Outle	et Devices				
#1	Device 2	292.0	00' 3.00	0 in/hr Exfiltration	over Surface are	a Phase-In= 0.01'		
#2	Primary	289.0	00' 12.0	" Round Culvert				
#3	Device 2	293.5	Inlet n= 0 50' 24.0	L= 107.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 289.00' / 286.86' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600				
				ted to weir flow at lo				

Primary OutFlow Max=0.62 cfs @ 12.50 hrs HW=293.57' TW=287.60' (Dynamic Tailwater) **2=Culvert** (Passes 0.62 cfs of 6.83 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.14 cfs)

-3=Orifice/Grate (Weir Controls 0.47 cfs @ 0.86 fps)

Summary for Pond 3P: Bioretention Pond 2

Inflow Area	a =	0.568 ac, 7	2.55% Imp	ervious, Inflo	w Depth	> 3.90	6" for 25-y	vr event
Inflow	=	2.52 cfs @	12.09 hrs,	Volume=	0.18	38 af	-	
Outflow	=	1.65 cfs @	12.18 hrs,	Volume=	0.18	31 af, <i>1</i>	Atten= 34%,	Lag= 5.7 min
Primary	=	1.65 cfs @	12.18 hrs,	Volume=	0.18	31 af		
Routed to Pond 8P : Underground Detention Pond 5								
Routing by Dyn-Stor-Ind method. Time Span= 0.00-24.00 brs. dt= 0.02 brs.								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.80' @ 12.18 hrs Surf.Area= 2,085 sf Storage= 2,425 cf Flood Elev= 291.50' Surf.Area= 2,248 sf Storage= 2,860 cf

Plug-Flow detention time= 132.7 min calculated for 0.180 af (96% of inflow) Center-of-Mass det. time= 111.4 min (902.0 - 790.6)

Volume	Inve	ert Avail.Sto	rage Storage	Description			
#1	289.0	00' 2,80	60 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
289.0	00	598	0	0			
290.0	00	1,437	1,018	1,018			
291.0	00	2,248	1,843	2,860			
Device	Routing	Invert	Outlet Device	S			
#1	Primary	286.50'	Inlet / Outlet I	P, square edge nvert= 286.50' /	headwall, Ke= 0.500 286.04' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf		
#2 #3	Device 1 Device 1		 3.000 in/hr Exfiltration over Surface area Phase-In= 0.01' 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 				

Primary OutFlow Max=1.65 cfs @ 12.18 hrs HW=290.80' TW=286.76' (Dynamic Tailwater) -1=Culvert (Passes 1.65 cfs of 7.12 cfs potential flow) -2=Exfiltration (Exfiltration Controls 0.14 cfs)

-3=Orifice/Grate (Weir Controls 1.50 cfs @ 1.26 fps)

Summary for Pond 4P: Trench Drain #20

Inflow Area	=	0.168 ac, 9	96.70% Impervious	, Inflow Depth >	• 5.17"	for 25-	yr event
Inflow :	=	0.90 cfs @	12.08 hrs, Volum	e= 0.07	2 af	-	
Outflow :	=	0.90 cfs @	12.08 hrs, Volum	e= 0.07	2 af, Att	en= 0%,	Lag= 0.0 min
Primary :	=	0.90 cfs @	12.08 hrs, Volum	e= 0.072	2 af		-
Routed t	o Ponc	3P : Biorete	ntion Pond 2				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.97' @ 12.14 hrs Flood Elev= 294.00'

2105261A-POST

Type III 24-hr 25-yr Rainfall=5.53" Printed 2/19/2024 .C Page 44

Device	Routing	Invert	Outlet Devices
#1	Primary	290.45'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 290.45' / 290.00' S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.83 cfs @ 12.08 hrs HW=290.94' TW=290.60' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.83 cfs @ 3.19 fps)

Summary for Pond 5P: Bioretention Pond 3

Inflow Area =	0.555 ac, 54.89% Impervious, Inflow	Depth > 3.45" for 25-yr event				
Inflow =	2.24 cfs @ 12.09 hrs, Volume=	0.160 af				
Outflow =	2.18 cfs @12.11 hrs, Volume=	0.145 af, Atten= 2%, Lag= 1.2 min				
Primary =	2.18 cfs @12.11 hrs, Volume=	0.145 af				
Routed to Pond 10P : DMH#31						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.54' @ 12.11 hrs Surf.Area= 1,089 sf Storage= 1,465 cf Flood Elev= 294.25' Surf.Area= 1,320 sf Storage= 2,022 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 68.0 min (882.2 - 814.2)

Volume	Inv	ert Avai	il.Storage	age Storage Description					
#1	291.0	20'	2,022 cf	Custom Stage Data (Irregular)Listed below (Recalc)					
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
291.0		<u>(sq-it)</u> 185	<u>(1661)</u> 54.6	0	(CUDIC-IEEL) 0	185			
291.5		302	84.9	121	121	523			
292.0	00	450	108.1	187	307	883			
293.0	00	849	153.3	639	946	1,832			
294.0	00	1,320	148.3	1,076	2,022	2,025			
Device	Routing	In	vert Outl	et Devices					
#1	Primary	288	8.50' 15.0	" Round Culvert					
#2 #3	Primary Device 1		Inlet n= 0 .00' 3.00 3.35' 24.0	L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 288.50' / 287.15' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf 3.000 in/hr Exfiltration over Surface area 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					

Primary OutFlow Max=2.17 cfs @ 12.11 hrs HW=293.54' TW=287.47' (Dynamic Tailwater) -1=Culvert (Passes 2.09 cfs of 11.76 cfs potential flow) -3=Orifice/Grate (Weir Controls 2.09 cfs @ 1.41 fps)

-2=Exfiltration (Exfiltration Controls 0.08 cfs)

Summary for Pond 6P: Trench Drain #40

 Inflow Area =
 0.602 ac, 89.60% Impervious, Inflow Depth > 4.83" for 25-yr event

 Inflow =
 3.14 cfs @
 12.08 hrs, Volume=
 0.242 af

 Outflow =
 3.14 cfs @
 12.08 hrs, Volume=
 0.242 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.14 cfs @
 12.08 hrs, Volume=
 0.242 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond 7P : Bioretention Pond 4
 0.242 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.77' @ 12.08 hrs Flood Elev= 291.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	289.56'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 289.56' / 289.40' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.13 cfs @ 12.08 hrs HW=290.77' TW=289.27' (Dynamic Tailwater) -1=Culvert (Barrel Controls 3.13 cfs @ 4.18 fps)

Summary for Pond 7P: Bioretention Pond 4

Inflow Area =	0.689 ac, 78.24% Impervious, Inflow	/ Depth > 4.46" for 25-yr event				
Inflow =	3.33 cfs @ 12.08 hrs, Volume=	0.256 af				
Outflow =	1.90 cfs @ 12.20 hrs, Volume=	0.256 af, Atten= 43%, Lag= 7.1 min				
Primary =	1.90 cfs @ 12.20 hrs, Volume=	0.256 af				
Routed to Pond 8P : Underground Detention Pond 5						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 289.51' @ 12.20 hrs Surf.Area= 2,791 sf Storage= 3,294 cf Flood Elev= 290.25' Surf.Area= 3,198 sf Storage= 4,756 cf

Plug-Flow detention time= 117.6 min calculated for 0.256 af (100% of inflow) Center-of-Mass det. time= 117.2 min (892.1 - 774.9)

Volume	Inve	rt Avail.Sto	orage Storage	Description	
#1	288.0	0' 4,7	56 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee	••	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
288.0	0	1,583	0	0	
289.0	0	2,365	1,974	1,974	
290.0	0	3,198	2,782	4,756	
Device	Routing	Invert	Outlet Devices	5	
#1	Primary	285.50'	12.0" Round		
#2	Device 1	288.00'	Inlet / Outlet Ir n= 0.013 Corr	nvert= 285.50' / rugated PE, sm	headwall, Ke= 0.500 285.35' S= 0.0075 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf Surface area Phase-In= 0.01'

2105261A-POST	Type III 24-hr	25-yr Rainfall=5.53"
Prepared by Keach-Nordstrom Associates, Inc		Printed 2/19/2024
HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions L	LC	Page 46

#3 Device 1 289.35' **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=1.89 cfs @ 12.20 hrs HW=289.51' TW=286.84' (Dynamic Tailwater)

2=Exfiltration (Exfiltration Controls 0.19 cfs)

3=Orifice/Grate (Weir Controls 1.70 cfs @ 1.31 fps)

Summary for Pond 8P: Underground Detention Pond 5

Inflow Area	=	2.101 ac, 5	52.26% Impervious, In	flow Depth > 3.27" for 25-yr event
Inflow =	=	3.63 cfs @	12.19 hrs, Volume=	0.573 af
Outflow =	=	1.35 cfs @	12.67 hrs, Volume=	0.456 af, Atten= 63%, Lag= 28.5 min
Primary =	=	1.35 cfs @	12.67 hrs, Volume=	0.456 af
Routed to	age			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 287.67' @ 12.65 hrs Surf.Area= 3,657 sf Storage= 6,365 cf Flood Elev= 290.40' Storage= 11,458 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 72.5 min (991.5 - 919.0)

Volume	Invert	Avail.Stor	rage Storage Description
#1	285.25'	11,45	 ADS N-12 48" @ 220.00' L x 4 Inside= 47.7"W x 47.7"H => 12.40 sf x 220.00'L = 2,728.0 cf Outside= 54.0"W x 54.0"H => 14.85 sf x 220.00'L = 3,266.8 cf 4 Chambers in 4 Rows 22.00' Header x 12.40 sf x 2 = 545.6 cf Inside
Device	Routing	Invert	Outlet Devices
#1	Primary	285.25'	12.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 285.25' / 284.75' S= 0.0083 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	285.25'	0
π ∠	Device	200.20	Limited to weir flow at low heads
#3	Device 1	287.25'	24.0" W x 3.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 1	289.00'	4.0' long x 1.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=1.35 cfs @ 12.67 hrs HW=287.67' TW=286.24' (Dynamic Tailwater)

-1=Culvert (Passes 1.35 cfs of 4.10 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.05 cfs @ 5.76 fps)

-3=Orifice/Grate (Orifice Controls 1.30 cfs @ 2.61 fps)

-4=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 10P: DMH#31

Inflow Area =3.702 ac,8.23% Impervious, Inflow Depth >1.65" for 25-yr eventInflow =4.24 cfs @12.25 hrs, Volume=0.509 afOutflow =4.24 cfs @12.25 hrs, Volume=0.509 af, Atten= 0%, Lag= 0.0 minPrimary =4.24 cfs @12.25 hrs, Volume=0.509 afRouted to Pond 1P : Culvert to South Street Drainage0.509 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 289.28' @ 12.28 hrs Flood Elev= 298.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	286.35'	15.0" Round Culvert L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 286.35' / 285.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.98 cfs @ 12.25 hrs HW=289.16' TW=288.40' (Dynamic Tailwater) -1=Culvert (Outlet Controls 3.98 cfs @ 3.25 fps)

Summary for Pond 11P: AD#33

Inflow Area =	3.147 ac,	0.00% Impervious, Inflov	v Depth > 1.39" for	25-yr event		
Inflow =	3.14 cfs @	12.29 hrs, Volume=	0.365 af	-		
Outflow =	3.14 cfs @	12.29 hrs, Volume=	0.365 af, Atten=	0%, Lag= 0.0 min		
Primary =	3.14 cfs @	12.29 hrs, Volume=	0.365 af	-		
Routed to Pond 12P : DMH#34						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 308.92' @ 12.29 hrs Flood Elev= 313.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	308.00'	15.0" Round Culvert L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 308.00' / 304.72' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.14 cfs @ 12.29 hrs HW=308.92' TW=303.72' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.14 cfs @ 3.26 fps)

Summary for Pond 12P: DMH#34

Inflow Area =	3.147 ac,	0.00% Impervious, Infle	ow Depth > 1.39" for 25-yr event			
Inflow =	3.14 cfs @	12.29 hrs, Volume=	0.365 af			
Outflow =	3.14 cfs @	12.29 hrs, Volume=	0.365 af, Atten= 0%, Lag= 0.0 min			
Primary =	3.14 cfs @	12.29 hrs, Volume=	0.365 af			
Routed to Pond 10P : DMH#31						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POST

HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC Peak Elev= 303.72' @ 12.29 hrs

Prepared by Keach-Nordstrom Associates, Inc

Flood Elev= 318.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	302.80'	15.0" Round Culvert
	ŗ		L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 302.80' / 292.00' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.14 cfs @ 12.29 hrs HW=303.72' TW=289.26' (Dynamic Tailwater)

Summary for Link A: South Street Drainage to Great Brook

Inflow Are	a =	11.778 ac, 14.37% Impervious, Inflow Depth > 1.73" for 25-yr event
Inflow	=	10.78 cfs @ 12.27 hrs, Volume= 1.694 af
Primary	=	10.78 cfs @ 12.27 hrs, Volume= 1.694 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.013 ac,	0.00% Impervious, Inflow	Depth > 1.70"	for 25-yr event
Inflow =	0.02 cfs @	12.10 hrs, Volume=	0.002 af	-
Primary =	0.02 cfs @	12.10 hrs, Volume=	0.002 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POSTType III 24-hr50-yr Rainfall=6.57"Prepared by Keach-Nordstrom Associates, IncPrinted 2/19/2024HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLCPage 49								
Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method								
Subcatchment1S: On & Off Site Flow Runoff Area=260,268 sf 4.85% Impervious Runoff Depth>2.11" Flow Length=1,333' Tc=17.5 min CN=58 Runoff=9.93 cfs 1.052 af								
Subcatchment2S: Flow to Nathaniel Dr Catch Runoff Area=570 sf 0.00% Impervious Runoff Depth>2.39" Flow Length=53' Slope=0.2500 '/' Tc=6.0 min CN=61 Runoff=0.04 cfs 0.003 af								
Subcatchment3S: Flow to Bioretention Runoff Area=36,791 sf 17.43% Impervious Runoff Depth>2.77" Flow Length=380' Tc=8.4 min CN=65 Runoff=2.49 cfs 0.195 af								
Subcatchment4S: Flow to BioretentionRunoff Area=17,403 sf62.38% ImperviousRunoff Depth>4.40"Flow Length=20'Slope=0.0050 '/'Tc=6.0 minCN=81Runoff=2.04 cfs0.147 af								
Subcatchment5S: Flow to Trench Drain #20 Runoff Area=7,328 sf 96.70% Impervious Runoff Depth>6.21" Flow Length=81' Tc=6.0 min CN=97 Runoff=1.08 cfs 0.087 af								
Subcatchment6S: Flow to Bioretention Runoff Area=24,188 sf 54.89% Impervious Runoff Depth>4.40" Flow Length=60' Tc=6.0 min CN=81 Runoff=2.84 cfs 0.204 af								
Subcatchment7S: Flow to Trench Drain Flow Length=169' Tc=6.0 min CN=94 Runoff=3.77 cfs 0.294 af								
Subcatchment8S: Flow to Bioretention 4 Runoff Area=3,808 sf 0.00% Impervious Runoff Depth>2.67" Flow Length=10' Slope=0.2500 '/' Tc=6.0 min CN=64 Runoff=0.27 cfs 0.019 af								
Subcatchment9S: On & Off Site Flow Flow Length=1,012' Tc=18.7 min CN=57 Runoff=4.84 cfs 0.530 af								
Pond 1P: Culvert to South Street DrainagePeak Elev=288.61'Inflow=16.16 cfs2.364 afPrimary=11.07 cfs2.256 afSecondary=5.09 cfs0.108 afOutflow=16.16 cfs2.364 af								
Pond 2P: Bioretention Pond 1Peak Elev=293.64' Storage=2,289 cf Inflow=2.49 cfs 0.195 af Outflow=1.49 cfs 0.184 af								
Pond 3P: Bioretention Pond 2 Peak Elev=290.86' Storage=2,564 cf Inflow=3.12 cfs 0.234 af Outflow=2.75 cfs 0.223 af								
Pond 4P: Trench Drain #20 Peak Elev=291.08' Inflow=1.08 cfs 0.087 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0300 '/' Outflow=1.08 cfs 0.087 af								
Pond 5P: Bioretention Pond 3Peak Elev=293.57'Storage=1,502 cfInflow=2.84 cfs0.204 afOutflow=2.78 cfs0.185 af								
Pond 6P: Trench Drain #40 Peak Elev=291.05' Inflow=3.77 cfs 0.294 af 12.0" Round Culvert n=0.013 L=8.0' S=0.0200 '/' Outflow=3.77 cfs 0.294 af								
Pond 7P: Bioretention Pond 4Peak Elev=289.59'Storage=3,512 cfInflow=4.04 cfs0.313 afOutflow=3.26 cfs0.309 af								

2105261A-POST Prepared by Keach-Nordstrom A HydroCAD® 10.20-2g_s/n 01045_©2		4-hr 50-yr Rainfall=6.57" Printed 2/19/2024 Page 50	
Pond 8P: Underground Detentior	Pond 5 Peak Elev=288.90' Storage=10,412	cf Inflow=6.11 cfs 0.716 af Outflow=2.86 cfs 0.597 af	
Pond 10P: DMH#31	Peak Elev=290 /' Round Culvert_n=0.013 L=135.0' S=0.0100	8' Inflow=6.24 cfs 0.716 af	
Pond 11P: AD#33		29' Inflow=4.84 cfs 0.530 af	
Pond 12P: DMH#34 15.0	.Peak Elev=304 /' Round Culvert_n=0.013_L=135.0'_S=0.0800	9' Inflow=4.84 cfs 0.530 af Outflow=4.84 cfs 0.530 af	
Link A: South Street Drainage to	Great Brook	Inflow=16.16 cfs 2.364 af	
Link B: Nathaniel Dr Catch Basin		Primary=16.16 cfs 2.364 af Inflow=0.04 cfs 0.003 af Primary=0.04 cfs 0.003 af	
Total Runoff Area	= 11.792 ac Runoff Volume = 2.530 af Av	verage Runoff Depth = 2.57	7'

Total Runoff Area = 11.792 acRunoff Volume = 2.530 afAverage Runoff Depth = 2.57"85.65% Pervious = 10.099 ac14.35% Impervious = 1.692 ac

Summary for Subcatchment 1S: On & Off Site Flow

Runoff	=	9.93 cfs @	12.26 hrs,	Volume=	1.052 af,	Depth> 2.11"
Routed	I to Pond	1P : Culvert	to South S	treet Drainage		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

A	rea (sf)	CN E	escription							
	8,992	98 F	Paved parking, HSG A							
	3,620	98 F	aved park	ing, HSG E	3					
	10,053	39 >	75% Gras	s cover, Go	bod, HSG A					
	11,033			,	bod, HSG B					
2	11,534		,	od, HSG B						
	15,036	70 V	Voods, Go	od, HSG C						
260,268 58 Weighted Average										
2	47,656	-		vious Area						
	12,612	4	.85% Impe	ervious Are	а					
Та	Longth	01	Valasity	0	Description					
Tc (min)	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)						
			•	• •	Sheet Flow,					
<u>(min)</u> 6.7	(feet) 50	(ft/ft) 0.1000	(ft/sec) 0.12	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96"					
(min)	(feet)	(ft/ft)	(ft/sec)	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow,					
(min) 6.7 8.8	(feet) 50 986	(ft/ft) 0.1000 0.1400	(ft/sec) 0.12 1.87	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps					
<u>(min)</u> 6.7	(feet) 50	(ft/ft) 0.1000	(ft/sec) 0.12	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,					
(min) 6.7 8.8	(feet) 50 986	(ft/ft) 0.1000 0.1400	(ft/sec) 0.12 1.87	• •	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.96" Shallow Concentrated Flow, Woodland Kv= 5.0 fps					

Summary for Subcatchment 2S: Flow to Nathaniel Dr Catch Basin

Runoff = 0.04 cfs @ 12.09 hrs, Volume= 0.003 af, Depth> 2.39" Routed to Link B : Nathaniel Dr Catch Basin

	Ar	rea (sf)	CN E	Description							
		570	61 >	61 >75% Grass cover, Good, HSG B							
		570	1	100.00% Pervious Area							
(r	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	2.1	50	0.2500	0.39		Sheet Flow,					
	0.0	3	0.2500	3.50		Grass: Short n= 0.150 P2= 2.96" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps					
	2.1	53	Total, I	ncreased t	o minimum	Tc = 6.0 min					

Summary for Subcatchment 3S: Flow to Bioretention Pond 1

Runoff = 2.49 cfs @ 12.12 hrs, Volume= 0.195 af, Depth> 2.77" Routed to Pond 2P : Bioretention Pond 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

Α	rea (sf)	CN E	Description							
	1,782	98 F	98 Roofs, HSG B							
	4,630		Paved parking, HSG B							
	13,628	61 >	>75% Grass cover, Good, HSG B							
	16,751	55 V	55 Woods, Good, HSG B							
	36,791 65 Weighted Average									
	30,379 82.57% Pervious Area									
	6,412 17.43% Impervious Area									
_										
Tc	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.9	50	0.1400	0.14		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.96"					
2.3	271	0.1587	1.99		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
0.2	59	0.3500	4.14		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
8.4	380	Total								

Summary for Subcatchment 4S: Flow to Bioretention Pond 2

Runoff = 2.04 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Bioretention Pond 2 0.147 af, Depth> 4.40"

Α	rea (sf)	CN E	Description						
	2,308	98 F	Paved parking, HSG A						
	8,548	98 F	Paved parki	ing, HSG B					
	2,217	39 >	>75% Grass	s cover, Go	ood, HSG A				
	4,330	61 >	-75% Grass	s cover, Go	od, HSG B				
	17,403	81 V	Veighted A	verage					
	6,547	3	37.62% Per	vious Area					
	10,856	6	62.38% Imp	pervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.9	20	0.0050	0.07		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 2.96"		
4.9	20	Total, I	Increased t	o minimum	Tc = 6.0 min				
4.9	20	Total, I	Increased t	o minimum		<u>n= 0.150</u>	P2= 2.96"		

Summary for Subcatchment 5S: Flow to Trench Drain #20

Runoff = 1.08 cfs @ 12.08 hrs, Volume= 0.087 af, Depth> 6.21" Routed to Pond 4P : Trench Drain #20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

A	rea (sf)	CN D	escription						
	1,583	98 F	98 Roofs, HSG B						
	242	61 >	75% Gras	s cover, Go	bod, HSG B				
	5,503	98 P	aved park	ing, HSG B	3				
	7,328	97 V	Veighted A	verage					
	242	3	3.30% Pervious Area						
	7,086	9	96.70% Impervious Area						
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
2.3	11	0.0100	0.08		Sheet Flow,				
					Grass: Short n= 0.150 P2= 2.96"				
0.4	70	0.0200	2.87		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
2.7	81	Total, I	ncreased t	o minimum	1 Tc = 6.0 min				

Summary for Subcatchment 6S: Flow to Bioretention Pond 3

Runoff = 2.84 cfs @ 12.09 hrs, Volume= Routed to Pond 5P : Bioretention Pond 3 0.204 af, Depth> 4.40"

	A	rea (sf)	CN D	escription							
		1,754	98 F	98 Roofs, HSG B							
		11,522	98 P	aved park	ing, HSG B						
		10,912	61 >	75% Gras	s cover, Go	od, HSG B					
		24,188	81 V	Veighted A	verage						
10,912 45.11% Pervious Area											
	13,276 54.89% Impervious Area										
	Tc	Length	Slope	Velocity	Capacity	Description					
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	3.7	20	0.0100	0.09		Sheet Flow,					
						Grass: Short n= 0.150 P2= 2.96"					
	0.2	40	0.0200	2.87		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	3.9	60	Total, I	ncreased t	o minimum	Tc = 6.0 min					
			,								

Summary for Subcatchment 7S: Flow to Trench Drain #40

Runoff = 3.77 cfs @ 12.08 hrs, Volume= 0.294 af, Depth> 5.86" Routed to Pond 6P : Trench Drain #40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

A	rea (sf)	CN D	escription						
	21,923	98 F	98 Paved parking, HSG B						
	394	74 >	75% Gras	s cover, Go	bod, HSG C				
	1,557	98 F	Roofs, HSG	βB					
	2,143	61 >	61 >75% Grass cover, Good, HSG B						
	187	74 >	74 >75% Grass cover, Good, HSG C						
	26,204	94 V	5 5						
	2,724	1	10.40% Pervious Area						
	23,480	8	9.60% Imp	pervious Ar	ea				
т	1 11		\/.l	0	Description				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.4	50	0.0800	0.25		Sheet Flow,				
					Grass: Short n= 0.150 P2= 2.96"				
0.5	19	0.0100	0.70		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
0.6	100	0.0200	2.87		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
4.5	169	Total, I	ncreased t	o minimum	n Tc = 6.0 min				

Summary for Subcatchment 8S: Flow to Bioretention 4

Runoff = 0.27 cfs @ 12.09 hrs, Volume= 0.019 af, Depth> 2.67" Routed to Pond 7P : Bioretention Pond 4

A	rea (sf)	CN	Description								
	2,812	61	61 >75% Grass cover, Good, HSG B								
	996	74	74 >75% Grass cover, Good, HSG C								
	3,808	64	64 Weighted Average								
	3,808		100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
0.6	10	0.2500	0 0.28		Sheet Flow,						
					Grass: Short	n= 0.150	P2= 2.96"				
0.6	10	Total,	Increased t	o minimum	Tc = 6.0 min						

Summary for Subcatchment 9S: On & Off Site Flow

Runoff = 4.84 cfs @ 12.28 hrs, Volume= 0.530 af, Depth> 2.02" Routed to Pond 11P : AD#33

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=6.57"

A	rea (sf)	CN D	escription						
	6,611	61 >	61 >75% Grass cover, Good, HSG B						
1	19,201	55 V	55 Woods, Good, HSG B						
	11,266	77 V	loods, Go	od, HSG D					
1	37,078	57 V	Veighted A	verage					
1	37,078	1	00.00% Pe	ervious Are	а				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.7	50	0.1000	0.12		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.96"				
7.4	803	0.1300	1.80		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.1	25	0.2800	3.70		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
4.5	134	0.0050	0.49		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
18.7	1,012	Total							

Summary for Pond 1P: Culvert to South Street Drainage

[80] Warning: Exceeded Pond 8P by 1.61' @ 12.10 hrs (2.61 cfs 0.059 af)

11.778 ac, 14.37% Impervious, Inflow Depth > 2.41" for 50-yr event Inflow Area = Inflow 16.16 cfs @ 12.26 hrs, Volume= = 2.364 af Outflow 16.16 cfs @ 12.26 hrs, Volume= 2.364 af, Atten= 0%, Lag= 0.0 min = Primarv = 11.07 cfs @ 12.26 hrs, Volume= 2.256 af Routed to Link A : South Street Drainage to Great Brook 5.09 cfs @ 12.26 hrs, Volume= Secondary = 0.108 af Routed to Link A : South Street Drainage to Great Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 288.61' @ 12.26 hrs Flood Elev= 290.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	284.48'	15.0" Round Culvert
			L= 75.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 284.48' / 282.66' S= 0.0243 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.23 sf
#2	Secondary	288.50'	20.0' long x 1.00' rise Sharp-Crested Rectangular Weir X 2.00
	-		2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=11.07 cfs @ 12.26 hrs HW=288.61' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 11.07 cfs @ 9.02 fps)

Secondary OutFlow Max=5.07 cfs @ 12.26 hrs HW=288.61' TW=0.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 5.07 cfs @ 1.12 fps)

Summary for Pond 2P: Bioretention Pond 1

Inflow Area =0.845 ac, 17.43% Impervious, Inflow Depth > 2.77" for 50-yr eventInflow =2.49 cfs @ 12.12 hrs, Volume=0.195 afOutflow =1.49 cfs @ 12.28 hrs, Volume=0.184 af, Atten= 40%, Lag= 9.5 minPrimary =1.49 cfs @ 12.28 hrs, Volume=0.184 afRouted to Pond 8P : Underground Detention Pond 50.184 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.64' @ 12.28 hrs Surf.Area= 2,133 sf Storage= 2,289 cf Flood Elev= 294.70' Surf.Area= 3,005 sf Storage= 4,497 cf

Plug-Flow detention time= 130.1 min calculated for 0.184 af (94% of inflow) Center-of-Mass det. time= 100.9 min (947.3 - 846.4)

Volume	Inver	t Avail	.Storage	Storage Description	n			
#1	292.00	•	4,497 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)		
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
292.0 292.5	0	<u>599</u> 599 1,161	166.3 259.1	0 432	0 432	599 3,742		
293.0 294.0	00	1,569 2,492	280.6 326.1	680 2,013	1,112 3,125	4,675 6,893		
294.5	50	3,005	317.9	1,372	4,497	7,343		
Device	Routing	Inv	vert Outle	et Devices				
#1	Device 2	292.	00' 3.00	0 in/hr Exfiltration	over Surface are	a Phase-In= 0.01'		
#2	Primary	289.	00' 12.0	" Round Culvert				
#3	Device 2	293.	Inlet n= 0 50' 24.0	L= 107.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 289.00' / 286.86' S= 0.0200 '/' Cc= (n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.7 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=1.49 cfs @ 12.28 hrs HW=293.64' TW=287.92' (Dynamic Tailwater) **2=Culvert** (Passes 1.49 cfs of 6.84 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.15 cfs)

3=Orifice/Grate (Weir Controls 1.34 cfs @ 1.21 fps)

Summary for Pond 3P: Bioretention Pond 2

Inflow Area	a =	0.568 ac, 7	2.55% Imp	ervious, Infl	ow Depth >	▶ 4.94"	for 50-yr	event
Inflow	=	3.12 cfs @	12.09 hrs,	Volume=	0.23	4 af	-	
Outflow	=	2.75 cfs @	12.13 hrs,	Volume=	0.22	3 af, Atte	en= 12%,	Lag= 2.6 min
Primary	=	2.75 cfs @	12.13 hrs,	Volume=	0.22	3 af		
Routed to Pond 8P : Underground Detention Pond 5								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.86'@ 12.13 hrs Surf.Area= 2,138 sf Storage= 2,564 cf Flood Elev= 291.50' Surf.Area= 2,248 sf Storage= 2,860 cf

Plug-Flow detention time= 117.6 min calculated for 0.223 af (95% of inflow) Center-of-Mass det. time= 91.7 min (877.7 - 786.0)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	289.0	00' 2,86	60 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
289.0)0	598	0	0	
290.0	00	1,437	1,018	1,018	
291.0	00	2,248	1,843	2,860	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	286.50'	Inlet / Outlet I	P, square edge Invert= 286.50' /	headwall, Ke= 0.500 286.04' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf
#2 #3	Device 1 Device 1		3.000 in/hr E 24.0" x 24.0"	xfiltration over	Surface area Phase-In= 0.01' Grate C= 0.600

Primary OutFlow Max=2.73 cfs @ 12.13 hrs HW=290.86' TW=287.07' (Dynamic Tailwater) 1=Culvert (Passes 2.73 cfs of 7.16 cfs potential flow) 2=Exfiltration (Exfiltration Controls 0.15 cfs)

-3=Orifice/Grate (Weir Controls 2.58 cfs @ 1.51 fps)

Summary for Pond 4P: Trench Drain #20

Inflow Are	a =	0.168 ac, 96.70% Impervious, Inflow Depth > 6.21" for 5	50-yr event		
Inflow	=	1.08 cfs @ 12.08 hrs, Volume= 0.087 af	-		
Outflow	=	1.08 cfs @ 12.08 hrs, Volume= 0.087 af, Atten= 09	%, Lag= 0.0 min		
Primary	=	1.08 cfs @12.08 hrs, Volume=0.087 af			
Routed to Pond 3P : Bioretention Pond 2					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 291.08' @ 12.11 hrs Flood Elev= 294.00'

2105261A-POST

Prepared by Keach-Nordstrom Associates, Inc HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	290.45'	12.0" Round Culvert
	-		L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 290.45' / 290.00' S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.99 cfs @ 12.08 hrs HW=291.07' TW=290.83' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.99 cfs @ 2.77 fps)

Summary for Pond 5P: Bioretention Pond 3

Inflow Area	a =	0.555 ac, 5	54.89% Imper	vious, Inflow D	epth > 4.40"	for 50-yr event
Inflow	=	2.84 cfs @	12.09 hrs, V	/olume=	0.204 af	-
Outflow	=	2.78 cfs @	12.10 hrs, V	/olume=	0.185 af, Atte	en= 2%, Lag= 1.0 min
Primary	=	2.78 cfs @	12.10 hrs, V	/olume=	0.185 af	-
Routed to Pond 10P : DMH#31						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 293.57' @ 12.10 hrs Surf.Area= 1,105 sf Storage= 1,502 cf Flood Elev= 294.25' Surf.Area= 1,320 sf Storage= 2,022 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 51.1 min (858.5 - 807.4)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	ion	
#1	291.0	20'	2,022 cf	Custom Stage D	ata (Irregular)Liste	ed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
291.0 291.5		185 302	54.6 84.9	0 121	0 121	185 523
292.0 293.0	00	450 849	108.1 153.3	187 639	307 946	883 1,832
294.0		1,320	148.3	1,076	2,022	2,025
Device	Routing	In	vert Outl	et Devices		
#1	Primary	288		" Round Culvert		
#2 #3	Primary Device 1		Inlet n= 0 1.00' 3.00 3.35' 24.0	/ Outlet Invert= 28 .013 Corrugated F 0 in/hr Exfiltration	PE, smooth interior n over Surface ar prifice/Grate C= 0	= 0.0150 '/' Cc= 0.900 -, Flow Area= 1.23 sf ea

Primary OutFlow Max=2.77 cfs @ 12.10 hrs HW=293.57' TW=289.33' (Dynamic Tailwater) -1=Culvert (Passes 2.69 cfs of 10.68 cfs potential flow) -3=Orifice/Grate (Weir Controls 2.69 cfs @ 1.53 fps)

-2=Exfiltration (Exfiltration Controls 0.08 cfs)

Summary for Pond 6P: Trench Drain #40

[58] Hint: Peaked 0.05' above defined flood level

Inflow Are	a =	0.602 ac, 89.60% Impervious, Inflow Depth > 5.86" for 50-yr event			
Inflow	=	3.77 cfs @ 12.08 hrs, Volume= 0.294 af			
Outflow	=	3.77 cfs @ 12.08 hrs, Volume= 0.294 af, Atten= 0%, Lag= 0.0 mii	n		
Primary	=	3.77 cfs @ 12.08 hrs, Volume= 0.294 af			
Routed to Pond 7P : Bioretention Pond 4					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 291.05' @ 12.08 hrs Flood Elev= 291.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	289.56'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 289.56' / 289.40' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.75 cfs @ 12.08 hrs HW=291.05' TW=289.52' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.75 cfs @ 4.78 fps)

Summary for Pond 7P: Bioretention Pond 4

Inflow Area	a =	0.689 ac, 7	8.24% Impervious, Infl	ow Depth > 5.45" for 50-yr event	
Inflow	=	4.04 cfs @	12.08 hrs, Volume=	0.313 af	
Outflow	=	3.26 cfs @	12.14 hrs, Volume=	0.309 af, Atten= 19%, Lag= 3.6 min	
Primary	=	3.26 cfs @	12.14 hrs, Volume=	0.309 af	
Routed to Pond 8P : Underground Detention Pond 5					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 289.59' @ 12.14 hrs Surf.Area= 2,856 sf Storage= 3,512 cf Flood Elev= 290.25' Surf.Area= 3,198 sf Storage= 4,756 cf

Plug-Flow detention time= 109.4 min calculated for 0.309 af (99% of inflow) Center-of-Mass det. time= 100.8 min (871.5 - 770.7)

Volume	١n	vert Avail.	Storage	Storage D	escription		
#1	288.	00' 4	,756 cf	Custom S	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)		
288.0	00	1,583		0	0		
289.0	00	2,365		1,974	1,974		
290.0	00	3,198		2,782	4,756		
Device	Routing	Inve	ert Outl	et Devices			
#1	Primary	285.5	0' 12.0	" Round (Culvert		
				-		headwall, Ke= 0.500	
			Inlet	/ Outlet Inv	/ert= 285.50' /	285.35' S= 0.0075 '/'	Cc= 0.900

2105261A-POST	Type III 24-hr 50-yr Rainfall=6.57"
Prepared by Keach-Nordstrom Associates, Inc	Printed 2/19/2024
HydroCAD® 10.20-2g s/n 01045 © 2022 HydroCAD Software Solutions	LLC Page 60

			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	288.00'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	289.35'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=3.24 cfs @ 12.14 hrs HW=289.59' TW=287.16' (Dynamic Tailwater)

-**1=Culvert** (Passes 3.24 cfs of 5.90 cfs potential flow)

-2=Exfiltration (Exfiltration Controls 0.20 cfs)

-3=Orifice/Grate (Weir Controls 3.04 cfs @ 1.60 fps)

Summary for Pond 8P: Underground Detention Pond 5

Inflow Area	=	2.101 ac, 5	52.26% Impervious, Inflow	/ Depth > 4.09" for 50-yr event	
Inflow	=	6.11 cfs @	12.14 hrs, Volume=	0.716 af	
Outflow	=	2.86 cfs @	12.74 hrs, Volume=	0.597 af, Atten= 53%, Lag= 3	6.0 min
Primary	=	2.86 cfs @	12.74 hrs, Volume=	0.597 af	
Routed to Pond 1P : Culvert to South Street Drainage					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 288.90' @ 12.60 hrs Surf.Area= 2,599 sf Storage= 10,412 cf Flood Elev= 290.40' Storage= 11,458 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 62.5 min (955.4 - 892.9)

Volume	Invert	Avail.Storage	Storage Description
#1	285.25'	11,458 cf	ADS N-12 48" @ 220.00' L x 4
			Inside= 47.7"W x 47.7"H => 12.40 sf x 220.00'L = 2,728.0 cf
			Outside= 54.0"W x 54.0"H => 14.85 sf x 220.00'L = 3,266.8 cf
			4 Chambers in 4 Rows
			22.00' Header x 12.40 sf x 2 = 545.6 cf Inside

Device	Routing	Invert	Outlet Devices
#1	Primary	285.25'	12.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 285.25' / 284.75' S= 0.0083 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	285.25'	2.5" W x 0.5" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Device 1	287.25'	24.0" W x 3.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 1	289.00'	4.0' long x 1.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s) 1.0' Crest Height

Primary OutFlow Max=2.87 cfs @ 12.74 hrs HW=288.74' TW=287.18' (Dynamic Tailwater) -1=Culvert (Passes 2.87 cfs of 4.29 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.05 cfs @ 6.03 fps) -3=Orifice/Grate (Orifice Controls 2.82 cfs @ 5.63 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 10P: DMH#31

Inflow Area =3.702 ac,8.23% Impervious, Inflow Depth >2.32" for 50-yr eventInflow =6.24 cfs @12.24 hrs, Volume=0.716 afOutflow =6.24 cfs @12.24 hrs, Volume=0.716 af, Atten= 0%, Lag= 0.0 minPrimary =6.24 cfs @12.24 hrs, Volume=0.716 afRouted to Pond 1P : Culvert to South Street Drainage0.716 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 290.48' @ 12.25 hrs Flood Elev= 298.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	286.35'	15.0" Round Culvert L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 286.35' / 285.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.23 cfs @ 12.24 hrs HW=290.47' TW=288.61' (Dynamic Tailwater) -1=Culvert (Outlet Controls 6.23 cfs @ 5.08 fps)

Summary for Pond 11P: AD#33

Inflow Area =	3.147 ac,	0.00% Impervious, Inflow E	Depth > 2.02" for 50-yr event	
Inflow =	4.84 cfs @	12.28 hrs, Volume=	0.530 af	
Outflow =	4.84 cfs @	12.28 hrs, Volume=	0.530 af, Atten= 0%, Lag= 0.0 min	
Primary =	4.84 cfs @	12.28 hrs, Volume=	0.530 af	
Routed to Pond 12P : DMH#34				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 309.29' @ 12.28 hrs Flood Elev= 313.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	308.00'	15.0" Round Culvert L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 308.00' / 304.72' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.83 cfs @ 12.28 hrs HW=309.29' TW=304.09' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.83 cfs @ 3.94 fps)

Summary for Pond 12P: DMH#34

 Inflow Area =
 3.147 ac, 0.00% Impervious, Inflow Depth > 2.02" for 50-yr event

 Inflow =
 4.84 cfs @
 12.28 hrs, Volume=
 0.530 af

 Outflow =
 4.84 cfs @
 12.28 hrs, Volume=
 0.530 af, Atten= 0%, Lag= 0.0 min

 Primary =
 4.84 cfs @
 12.28 hrs, Volume=
 0.530 af

 Routed to Pond 10P : DMH#31
 0.530 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

2105261A-POST

Peak Elev= 304.09' @ 12.28 hrs Flood Elev= 318.00'

Prepared by Keach-Nordstrom Associates, Inc

Device	Routing	Invert	Outlet Devices
#1	Primary	302.80'	15.0" Round Culvert
			L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 302.80' / 292.00' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.83 cfs @ 12.28 hrs HW=304.09' TW=290.44' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.83 cfs @ 3.94 fps)

Summary for Link A: South Street Drainage to Great Brook

Inflow Are	a =	11.778 ac, 14.37% Impervious, Inflow Depth > 2.41" for 50-yr event
Inflow	=	16.16 cfs @ 12.26 hrs, Volume= 2.364 af
Primary	=	16.16 cfs @ 12.26 hrs, Volume= 2.364 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Nathaniel Dr Catch Basin

Inflow Area =	0.013 ac,	0.00% Impervious, Inflow I	Depth > 2.39"	for 50-yr event
Inflow =	0.04 cfs @	12.09 hrs, Volume=	0.003 af	-
Primary =	0.04 cfs @	12.09 hrs, Volume=	0.003 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

18. SITE SPECIFIC SOIL SURVEY REPORT

February 15, 2024

Matt Peterson Keach-Nordstrom Associates, Inc. mpeterson@keachnordstrom.com

RE: Map 43 Lot 20-2 South St. Milford, NH

SUBJECT: Site-Specific Soil Map Report

Dear Mr. Peterson,

The purpose of this soil report and accompanying soil map is to document the soil characteristics for the project location referenced above in the Town of Milford, NH.

This soil map was prepared by Stoney Ridge Environmental (SRE) utilizing the Site-Specific Soil Mapping Standards for New Hampshire and Vermont (SSSMS), SSSNNE Special Publication No. 3, Version 7, July 2021. The soil map units were identified using the New Hampshire State-Wide Numerical Soils Legend, Issue #10, January 2011. Further references used in the process of developing the soil map, soil legend and soil report are listed below:

- 1 For disturbed soils, the January 4, 2011 Draft Proposal for Disturbed Soil Mapping Unit Supplement for AoT Site Specific Soil Maps was utilized.
- 2 Soil Science Division Staff. 2017. Soil Survey Manual. C. Ditzer, K. Scheffe and H.C. Monger (editors) USDA Handbook 18. Government Printing Office, Washington, D.C.
- 3 Field Indicators for Identifying Hydric Soils in New England. Version 4, June 2020.
- 4 Field Book for Describing and Sampling Soils. Version 3.0, National Survey Center. Natural Resources Conservation Services (NRCS). September 2012.
- 5 United States Department of Agriculture. Natural Resources Conservation Services. Official Series Descriptions. US Department of Agriculture, (NRCS).
- 6 Ksat Values for New Hampshire Soils. SSSNNE Special Publication No.5, September 2009.
- 7 Chapter 7. USDA NRCS Engineering Handbook.
- 8 The Site-Specific Soil Mapping Standards For New Hampshire And Vermont. SSSNNE Special Publication No.3, Version 7. July 2021.

The Site-Specific Soil Mapping Standards apply the latest up to date knowledge of soils and provide the public with the most advanced soil resource information available today. The Site-Specific Standards are based on a universally recognized taxonomic system of soil classification

and are supported by national soil mapping standards established by the USDA National Cooperative Soil Survey. They allow for the development of multi-purpose soil map products, which are carefully controlled and monitored through a state, regional, and national quality assessment program. The Site-Specific Standards are backed by the most advanced soil research program in the world. The Site-Specific Standards have been developed by the Society of Soil Scientists of Northern New England in cooperation with the USDA Natural Resources Conservation Service in response to the need to provide regulatory agencies, local officials, and land use planners with consistent, high quality, large scale soil resource information.

The accompanying soil map was developed on a base map of 1" = 30', with contour intervals of 2 feet. The base existing conditions plan was supplied by Keach-Nordstrom Associates, Inc. The soils fieldwork for the Site-Specific Soils Map was performed on February 8, 2024. Test pit data was recorded by Keach Nordstom Associates, Inc and used by SRE for final soil classifications in addition to SRE field work. All field work and soil mapping was completed by Cynthia M. Balcius CSS, CWS & CPESC of SRE.

Location Description

The site is located at the corner of South Street and Nathaniel Drive, Milford, NH. This lot is partially disturbed with stockpiles of soil and sand located in some re-graded areas in the front southern corner of the lot. The site is vegetated with gray birch, poplar, rosa multi-flora, sumac, golden rod and raspberry in the disturbed areas. The un-disturbed areas were wooded with red oak, red maple and various ferns. There are no buildings or structures on site presently.

A view of the corner lot.

General Soil Conditions

The overall soil conditions on site find soils developed in glacial outwash sands and fine sands while in the transitional sloping areas to the back of the lot the soils have developed in sandy glacial till. The southern corner of the lot has been disturbed by grubbing, grading and some limited sandy loam fill.

Site Soil Descriptions

Deerfield loamy sand (313A,B,C): The Deerfield sandy loam and loamy sands dominate the entire front of the site. These moderately well drained soils have formed on deep glacial outwash sands. Seasonal highwater tables were found between 19 and 36 inches below the surface. Slopes on site were relatively level. The K_{sat} rates for this soil series range from 6.0 to 20.0 inches per hour in the upper horizons and 20.0 to 100.0 inches per hour in the lower substratum.

Newfields fine sandy loam (444B,C&D): Newfield soils are moderately well drained and have developed in sandy glacial till. This soil series was observed in the transitional slope areas rising in elevation in the back of this small lot marking the transition from glacial outwash to glacial till. Seasonal highwater tables were found between 15 and 40 inches. Slopes were generally moderately steep. The K_{sat} rates for this soil series range from 0.6 to 2.0 inches per hour in the upper horizons and 0.6 to 2.0 inches per hour in the lower substratum.

A view of the relatively level topography of the site.

Wareham fine sandy loam (34A/PD): Wareham fine sandy loam is a poorly drained soil and is found in the northwest corner of the site. This soil has developed in sandy wet glacial outwash materials in a low depressional area on site. Seasonal highwater tables are found at the surface. The K_{sat} rates for this soil type range from 6.0 to 20.0 inches per hour in the upper horizons and 6.0 to 20.0 inches per hour in the lower substratum.

A view of the wetland pocket found on site.

Udorthents, smoothed (200B&D): This disturbed soil map unit is mostly comprised of Deerfield sandy soils that have been regraded with additions of some fine sandy loams. The soil characteristics still are represented by Deerfield Series. The seasonal highwater table can be found between 19-37 inches below the surface. This map unit was observed in the southern corner of the lot. The disturbed map unit symbols for this soil is (d)Moderately Well Drained (b) glaciofluvial materials (a) no restrictive layers (a) high Ksat and (a) Group A. (dbaaa).

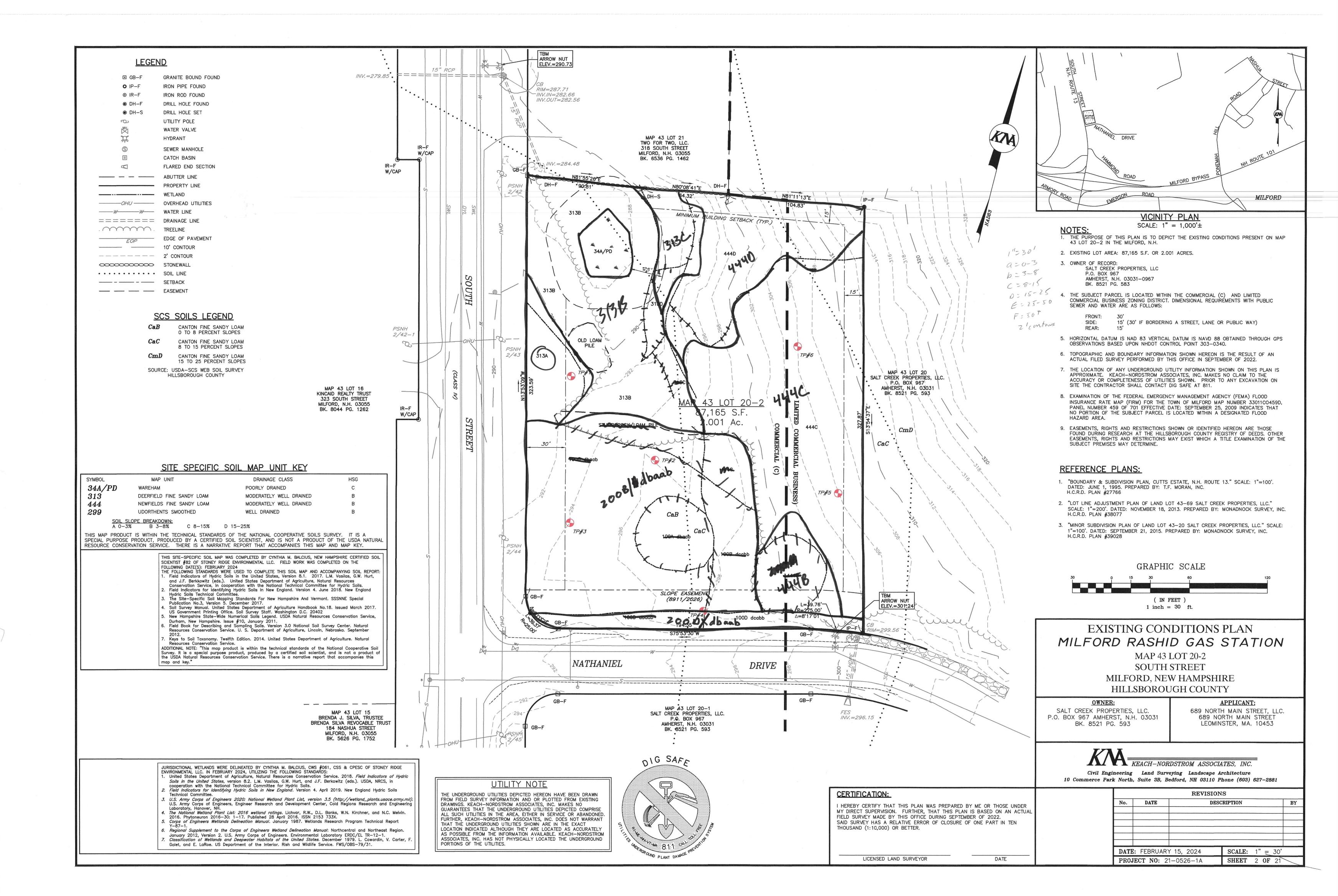
A view of the Newfield Soil Series observed on-site.

Test pit profiles from Keach-Nordstrom Associates, Inc. have been included in this report. A Site-Specific Soil Map Unit legend for the site-specific soil map symbols used in the preparation of this map is also attached to this report.

This completes the narrative report that accompanies the site-specific soil map prepared for the site identified as Map 43 Lot 20-2, Milford, New Hampshire. If there are any questions regarding the soil map or the report, please feel free to contact me at 776-5825.

Sincerely, Stoney Ridge Environmental LLC Cynthia M. Balcius, CS, C. Senior Soil & Wetland/Scientist 2

· · · · · · · · · · · · · · · · · · ·		
TP #1	TP #2	TP # 3
LOGGED BY TEC DATE: 11/21/2022	LOGGED BY TEC DATE: 11/21/2022	LOGGED BY TEC DATE: 11/21/2022
E.S.H.W.T. © 36"	E.S.H.W.T. 0 51"	E.S.H.W.T. O 19"
ROOTS © 18" SEEPS NONE © 70"	Roots None © 60" Seeps None © 60"	ROOTS NONE © 62" SEEPS NONE © 62"
REFUSAL NONE © 70"	0" REFUSAL NONE © 60"	0" REFUSAL NONE © 62"
<u>v</u>	MIXED SANDY FILL	10YR 3/3 DARK BROWN
10YR 3/3 DARK BROWN, SANDY LOAM,	18" MIAED SANDT FILL	GRAVÉLY FINE SANDY LOAM, GRANULAR,
SUB ANGULAR BLOCKY	10YR 3/3 DARK BROWN, SANDY LOAM, MASSIVE,	FRIABLE
FRIABLE	FRIARIF	2.5Y 5/6 LIGHT OLIVE
8"	21-	2.5Y 5/6 LIGHT OLIVE BROWN, LOAMY FINE SAND, SUB ANGULAR
	10YR 5/6 YELLOWISH BROWN, FINE SANDY	13" BLOCKY, FRIABLE
10YR 5/6 YELLOWISH BROWN, GRAVELY	ILOAM, MASSIVE, FRIABLE I	2.5Y 5/4 LIGHT OLIVE
SAND, SINGLE GRAIN	<u>26</u> *	BROWN, LOAMY VERY FINE SAND, ANGULAR
LOOSE, 20% FINE GRAVEL	2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY	22" BLOCKY, VERY FRIABLE
14"	JA*	2.5Y 6/3 LIGHT
		YELLOWISH BROWN, VERY GRAVELY COARSE SAND,
	2.5Y 6/4 LIGHT YELLOWISH BROWN,	SINGLE GRAIN, LOOSE, 40% FINE GRAVEL
2.5Y 5/4 LIGHT OLIVE	GRAVELY COARSE SAND, SINGLE GRAIN, LOOSE,	40% FINE GRAVEL
BROWN, GRAVELY SAND, SINGLE GRAIN, LOOSE,	20% FINE GRAVEL	
25% FINE GRAVEL	<u>44"</u>	2.5Y 6/3 LIGHT YELLOWISH BROWN, SAND
	2.5Y 6/3 LIGHT YELLOWISH BROWN, FINE	WITH ALTERNATING
	TO MEDIUM SAND, SINGLE GRAIN, LOOSE,	LENSES OF 5Y 5/2 LIGHT GRAY, SILT
	5% FINE GRAVEL	
70" BOTTOM OF	60" BOTTOM OF HOLE	62" BOTTOM OF HOLE
TP #4		TP #6
LOGGED BY TEC DATE: 11/21/2022	LOGGED BY TEC DATE: 11/21/2022	LOGGED BY TEC DATE: 11/21/2022
E.S.H.W.T. O 28" ROOTS NONE O 42"	E.S.H.W.T. © 37" Roots None © 38"	E.S.H.W.T. 🍎 32" ROOTS NONE 🗢 33"
SEEPS NONE © 63" REFUSAL NONE © 63"	SEEPS NONE © 60" REFUSAL NONE © 60"	SEEPS NONE © 60" REFUSAL NONE © 60"
U	0	
10YR 3/3 DARK BROWN, SANDY LOAM, GRANULAR, FRIABLE	10YR 3/3 DARK BROWN, FINE SANDY	10YR 3/3 DARK
×	LÕAM, GRANULAR, FRIABLE	BROWN, FINE SANDY LOAM, GRANULAR,
10YR 5/6 YELLOWISH BROWN, LOAMY, SAND	8*	12" FRIABLE
BROWN, LOAMY SAND, WEAK FINE, GRANULAR, WEAK FINE, GRANULAR,	10YR 5/6 YELLOWISH	
9" VERY FRIABLE	BROWN, GRAVELY SANDY LOAM, GRANULAR,	10YR 4/6 DARK YELLOWISH BROWN, FINE
2.5Y 6/4 LIGHT YELLOWISH BROWN,	15" FRIABLE	SANDY LOAM, GRANULAR,
COAPSE SAND SINCLE		20" FRIABLE
GRAIN, LOOSE, 10% FINE GRAVEL	10YR 5/8 YELLOWISH BROWN, GRAVELY	
<u>17</u>	LOAMY SAND, SUB ANGULAR BLOCKY,	2.5Y 5/6 LIGHT OLIVE BROWN, GRAVELY FINE
2.5Y 7/2 LIGHT GRAY, VERY FINE SAND,	FRIABLE	SANDY LOAM, SUB ANGULAR BLOCKY,
24" ANGULAR, BLOCKY	24*	FRIABLE
2.5Y 6/3 LIGHT		26"
YELLOWISH BROWN, GRAVELY MEDIUM TO	2.5Y 6/4 LIGHT	
FINE SAND, MASSIVE, FINE SAND, MASSIVE, FRIABLE	YELLOWISH BROWN, STONY LOAMY SAND,	2.5Y 5/3 LIGHT OLIVE
33" FRIABLE	MASSIVE, FRIABLE	BROWN, STONY LOAMY SAND, MASSIVE, FRIABLE
2.5Y 5/2 GRAYISH BROWN STONY LOAMY		
BROWN STONY LOAMY SAND, MASSIVE, FRIABLE /		
63" BOTTOM OF	60" BOTTOM OF HOLE	60" BOTTOM OF
BS BOTTOM OF		


à

KNA South Street, Milford, NH SRE# 24-006 February 10, 2024

SITE-SPECIFIC SOIL MAP UNIT KEY

<u>Symbol</u>	<u>Map Unit</u>	<u>Slope Class %</u>	Drainage Class	HSG/Group
34A/PD	Wareham fine sandy loam	0-3%	Poorly Drained	C/5
313A	Deerfield loamy sand	3-8%	Moderately Well Drained	B/3
313B	Deerfield loamy sand	3-8%	Moderately Well Drained	B/3
313C	Deerfield loamy sand	8-15%	Moderately Well Drained	B/3
444B	Newfields fine sandy loam	3-8%	Moderately Well Drained	B/3
444C	Newfields fine sandy loam	8-15%	Moderately Well Drained	B/3
444D	Newfields fine sandy loam	15-25%	Moderately Well Drained	B/3
200B/dbaab	Udorthents, smoothed	3-8%	Moderately Well Drained	B/3
200D/dbaab	Udorthents, smoothed	15-25%	Moderately Well Drained	B/3

"This map product is within the technical standards of the National Cooperative Soil Survey. It is a special purpose product, produced by a certified soil scientist, and is not a product of the USDA Natural Resources Conservation Service. There is a narrative report that accompanies this map and map key."

19. OPERATION and MAINTENANCE PLAN with CHECKLIST

STORMWATER

OPERATION & MAINTENANCE PLAN

Milford Rashid Gas Station South Street Milford, New Hampshire

Map 43; Lot 20-2

February 19, 2024

TABLE OF CONTENTS:

I. General

Introduction General Maintenance Requirements

II. Supporting Documents

Annual Inspection & Maintenance Reporting Form Long-Term Inspection & Maintenance Plan Checklist Long-Term Inspection & Maintenance Log Anti-Icing Route Data Form

III. Control of Invasive Plants

Invasive Plant Guide

IV. Stormwater Practice Location Plan

11"x17" "Grading and Drainage Plan"

I. General

Introduction

The project owner or their assigned heirs will maintain the stormwater treatment facilities after construction is completed. The applicant of the project is 689 North Main Street LCC, 689 North Main Street, Leominster, MA 01453.

The subject property is referenced on Map 43; Lot 20-2 in Milford, New Hampshire. Any transfer of responsibility for inspection and maintenance activities or transfer of ownership shall be documented to the New Hampshire Department of Environmental Services and Town of Milford in writing. The contract documents will require the contractor to designate a person responsible for maintenance of the sedimentation control features during construction. Long-term operation and maintenance for the stormwater management facilities are presented below.

Maintenance will be performed as described and required in the Alteration of Terrain Permit unless and until the system is formally accepted by a municipality or quasi-municipal district, or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system.

Post Construction:

The following standards will be met after construction is complete:

Documentation:

A maintenance log will be kept summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspector findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. A photo must be included. If a maintenance task requires the clean out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department and/or Town staff and NHDES staff and a copy provided upon request.

Maintenance Requirements

Subsurface Detention Systems:

- Removal of accumulated sediment.
- Systems should be inspected at least twice annually with maintenance or rehabilitation conducted as warranted by such inspection.
- Trash and debris should be removed at each inspection.

Catch Basins and Closed Drainage Network:

- Catch basins may require frequent maintenance. This may require several cleanings of the sumps each year. At a minimum, it is recommended that catch basins be inspected at least twice annually.
- Sediment should be removed when it approaches half of the sump depth.
- If floating hydrocarbons are observed during an inspection, the material should be removed immediately by skimming, absorbent materials, or other methods and disposed in conformance with the applicable state and federal regulations.

Bioretention Ponds:

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Pre-treatment measures should be inspected at least twice annually, and cleaned of accumulated sediment as warranted by inspection, but no less than once annually.
- Trash and debris should be removed at each inspection.
- At least once annually, the system should be inspected for drawdown time. If the pond does not drain within 72-hours following a rainfall event, a qualified professional should assess the condition of the facility to determine measures required to restore filtration function, including but not limited to the removal of accumulated sediments or reconstruction of the filter media.
- Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species.

Outlet Protection:

• Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.

General:

• If any invasive species begin to grow in the stormwater management practices the species shall be disposed of in an appropriate manner that will not allow the pest to survive or spread. The disposal of such species shall be witnessed or approved by a state inspector. Methods for disposal may include, but not be limited to:

- Encapsulating the plant(s) in plastic bags and disposing of the plant material in one of the following ways:
 - Trash pickup;
 - Discarding;
 - Open burning;
 - Incineration; or
 - Burial of infested nursery.

II. Supporting Documents

Annual Inspection and Maintenance Reporting Form for Milford Rashid Gas Station Milford, New Hampshire

Date: _____

To: 689 North Main Street LLC

Re: Certification of Inspection and Maintenance; Submittal of Forms

Property Name: _	
Property Address:	
Contact Name:	
Contact Phone #: _	
Contact Email Addr	ess:

I verify that the required stormwater facility inspections and required maintenance have been completed in accordance with the <u>Operation & Maintenance Plan</u> associated with the above referenced property.

The required Long-Term Inspection & Maintenance Plan Checklist is attached to this form.

Name of Party Responsible for Inspection & Maintenance

Property Owner

Authorized Signature

Signature

Long-Term Inspection & Maintenance Plan Checklist Milford Rashid Gas Station – Milford, NH

Current Owner Name:	Date:		
Business Address:	Inspector:		
Weather:			
Date of Last Rainfall:		Amount:	Inches:
Best Management Practice			
Subsurface Detention Systems		Reason for Ins	spection
	Spring	Fall/Yearly	After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗌 I	No 🗆	
Catch Basins & Closed Drainage	Reason for Inspection		
Network	Spring	Fall/Yearly	After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 I	No 🗆	
Bioretention Ponds		Reason for Ins	spection
	Spring	Fall/Yearly	After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 I	No 🗆	
Visual inspection of drawdown time	Yes 🛛 I	No 🗆	
Drawdown time less than 72 hours? (if no, call a qualified professional for insp		No 🗆	
General		Reason for Ins	spection

	Spring	9 E		Fall/Yearly	After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		No	o 🗆	

Long-Term Inspection & Maintenance Log Milford Rashid Gas Station – Milford, NH

Date	Inspection (Yes or No)	Maintenance (Yes or No)	List BMPs Inspected and/or Provide Comments	Inspected By:

Anti-icing Route Data Form Milford Rashid Gas Station – Milford, NH

Truck Station:				
Date:				
Temperature:	Pavement Temperature:	Relative Humidity:	Dew Point:	Sky:
Reason For Ap	pplying:	<u> </u>	<u> </u>	
Route:				
Chemical:				
Application Tin	ne:			
Application Am	iount:			
Observation (fi	rst day):			
Observation (a	fter event):			
Observation (b	efore next application):			
Name:				

III. Control of Invasive Plants

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some Exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

During maintenance activities, check for the presence of invasive plants and suitably remove according to the methods provided in the table below. The following table, based on the "Control of Invasive Plants" published by the New Hampshire Department of Agriculture, describes the most common invasive plants in this region and proper methods of disposal.

Name	Description	Invasive Qualities	Control Methods					
		Invasive Trees						
Norway Maple	 Large leaves Will exude milky white sap when leaves are broken Leaves turn color in Late October (fall foliage is yellow) 	 Suppresses growth of grass, garden plants, and forest understory Wind-borne seeds can germinate and grow in deep shade 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out plants, including the root systems. Use a forked spade or weed wrench. Cut down the tree. Grind out the stump, or clip off re-growth. Girdle¹ Frill² Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray with glyphosate ^{3*} (mid-October to early November). 					
Tree of Heaven	 Long compound leaves with 11-25 lance shaped leaflets Smell like peanut butter or burnt coffee when crushed 	 Tough, can grow in poor conditions Produces large quantities of wind-borne seeds Grows rapidly Secretes a toxin that kills other plants Cannot be removed by mechanical means alone 	 Pull seedlings when soil is moist. Frill² (no more than 1" gap between cuts). Use Garlon 3a herbicide. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.* Foliar spray^{3*} (on regrowth) Paint bottom 12" of bark with Garlon 4 Ultra (February/March). Use maximum strength specified on label for all herbicide applications. 					

Invasive Shrubs							
Autumn Olive	- Formerly recommended for erosion control and wildlife value	- Highly invasive, diminishes the overall quality of wildlife habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs (up to 4" diameter trunks). Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Bury stump Do not mow 				

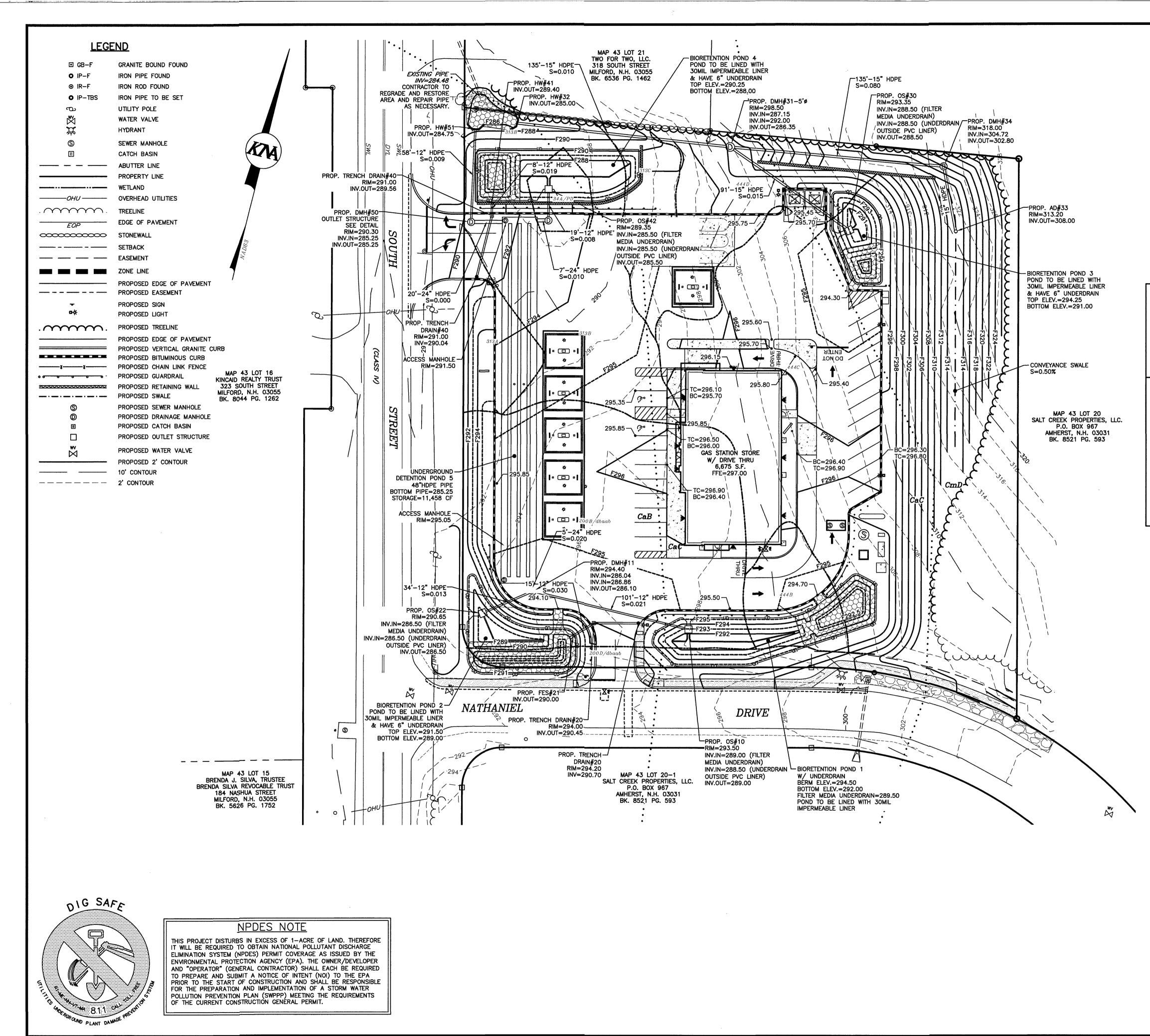
Invasive Shrubs (continued)			
Multiflora Rose	 Formerly recommended for erosion control, hedges, and wildlife habitat Covered in white flowers in June Very hard, curved thorns Fringed edge to leaf stalk 	 Huge shrub that chokes out all other vegetation Too dense for most birds to nest in Grows up trees like a vine in Shade 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems (at least 6" from the crown and 6" down). Use a forked spade or weed wrench for trees or shrubs. Controlled burning⁴ (on extensive infestations) Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (mix Rodeo with extra sticker-spreader, or use Roundup Sure Shot Foam on small plants) Herbicide may be applied in winter when other plants are dormant.
Bush Honeysuckles	- Includes Belle, Amur, Morrow's, and Tatarian Honeysuckle	- Creates dense shade reducing plant diversity and eliminating nest sites in forest interior spaces	 Deadhead to prevent spread of seeds (on ornamentals). Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year (on shady sites only, brush cut in early spring and fall). Controlled burning⁴ (during growing season) Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate (late in the growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.*

Invasive Shrubs (continued)			
Blunt-Leaved Privet	 Medium sized shrub Simple, oblong, dark green leaves 1-2" in length Fragrant white flowers (spring) Blackish-purple fruit (late summer) 	- Toxic to mammals - Loss of valuable habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers Do not cut back or mow
Burning Bush, Winged Euonymus	 Wide, corky wings on the Branches Brilliant red autumn leaves Fruit 	- High seed production	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers
Japanese Barberry	- Spiny deciduous shrub - Small leaves	 Very dense, displaces native plants Can change chemistry of soil 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers

Invasive Woody Vines			
Japanese Honeysuckle	- Gold and White flowers - Heavy scent and sweet nectar in June	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Rampant grower Spirals around trees, often strangling them 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (fall or early spring when native vegetation is dormant) Plan to re-treat repeatedly
Oriental Bittersweet	 Bright orange seed capsules in clusters all along the stem Flowers 	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Keep ornamental plants cut back, remove all fruits as soon as they open, and bag or burn fruits. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.*
Japanese Knotweed, Mexican Bamboo	 The stems have knotty joints, similar to bamboo Grows 6-10' tall Large, pointed oval or triangular leaves 	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Can grow in shade 	 Cut stem/ cut stump with Glyphosate (at least 3 times each during growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} Treat with Rodeo In gardens, heavy mulch or dense shade may kill it.

Invasive Herbaceous Plants			
Garlic Mustard	 White-flowered biennial Rough scalloped leaves (kidney, heart, or arrow shaped) Garlic smell, mustard taste when its leaves are crushed 	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Rampant grower Spirals around trees, often strangling them 	 Pull seedlings and small or shallow-rooted plants when soil is moist (before it flowers in spring). Dig out larger plants, including the crown and root systems. Use a forked spade or weed wrench for trees or shrubs. Tamp down soil afterwards. Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn or send to a landfill. Foliar spray^{3*} (may be appropriate in some settings)
Japanese Stilt Grass	- Lime green color - Line of silvery hairs down the middle of the 2-3" long blade	 Tolerates sun or dense shade Quickly invades areas left bare or disturbed by tilling or flooding Builds a large seed bank in the soil 	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to mid- summer).Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.

Invasive Herbaceous Plants (continued)			
Mile-A-Minute Vine, Devil's Tail Tearthumb	- Triangular leaves - Barbed stems - Turquoise berries	- Rapid growth - Quickly covers and shades out herbaceous plants	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to mid- summer).Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.
Spotted Knapweed	- Thistle-like flowers	- Dense, crowds out native species	 Do not pull unless the plant is young and the ground is very soft. The root will break and produce several new plants. Wear sturdy gloves Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. In lawns, spot treat with broad-leaf weed killer. Good lawn care practices (test soil; use lime and fertilizer only when soil test shows a need; mow high and frequently; leave clippings on lawn) reduce weed infestations. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*}


<u>1Girdle:</u> Cut through the bark and growing layer all around the trunk, about 6" above the ground. Girdling is most effective in spring (when the sap is rising) & middle-late summer (when the tree is sending food to the roots). Clip off sucker sprouts.

²<u>Frill:</u> Using a machete, hatchet, or similar device, hack scars (several holes in larger trees) downward into the growing layer, and squirt in glyphosate (or triclopyr if specified in table). Follow label directions for injection and frill applications. This is most effective from middle to late summer. Clip off any sucker sprouts or treat with glyphosate.

<u>³Foliar Spray:</u> Use a backpack or garden sprayer or mist blower, following label directions. Avoid overspray and/or dripping onto non-target plants, because glyphosate kills most plants except moss. If it rolls off waxy or grass-like foliage, use additional sticker-spreader. Deciduous trees, shrubs, and perennials move nutrients down to the roots in late summer. Glyphosate is particularly effective at this time and when plants have just gone out of flowering. Several invasive species retain their foliage after native plants have lost theirs, and resume growth earlier in spring than most natives. This allows you to treat them without harming the natives. However, the plant must be actively growing for the herbicide to work. Retreatments may be necessary the following year if suckering occurs or the plant hasn't been entirely killed.

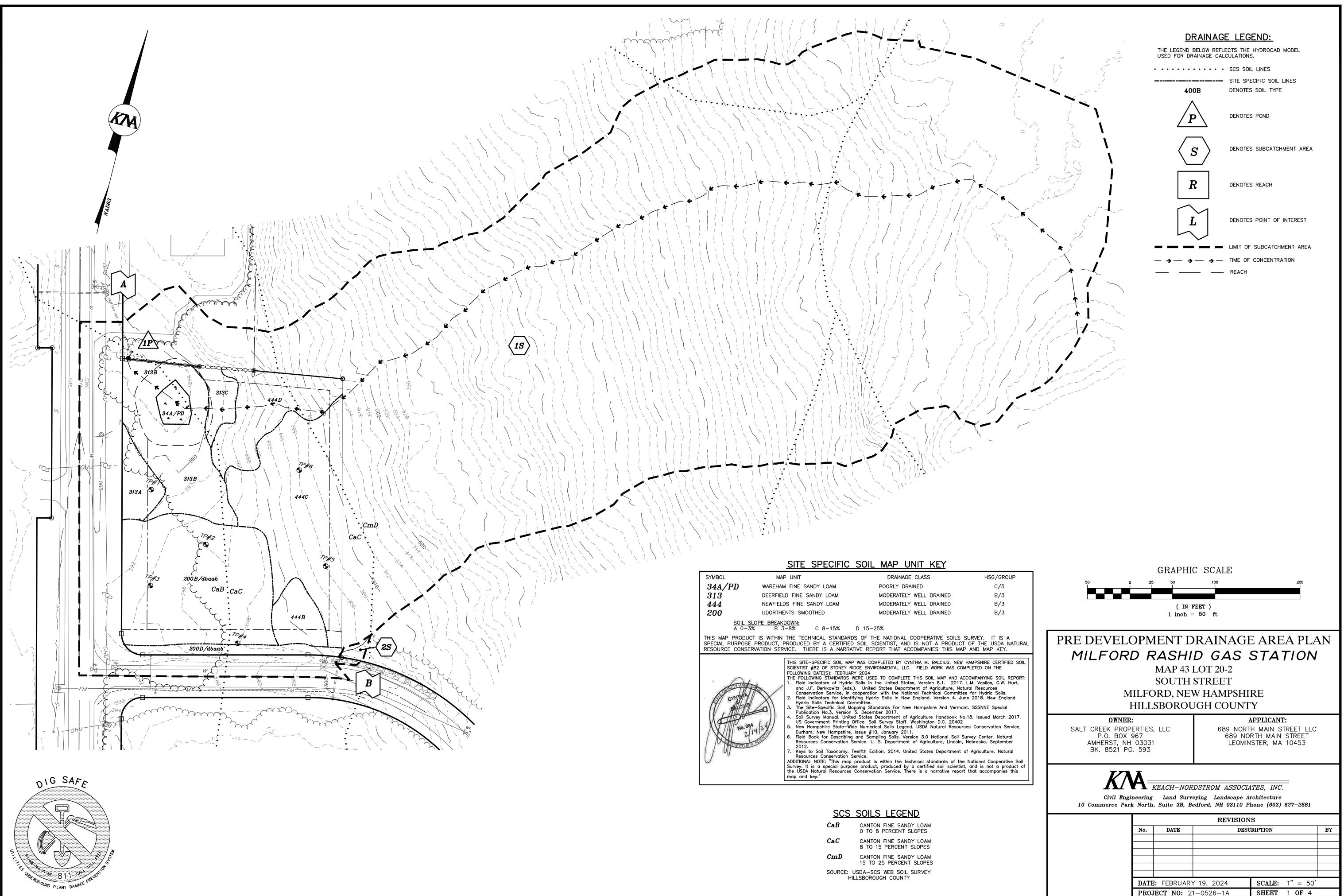
⁴<u>Controlled Burning</u>: Burning during the spring (repeated over several years) will allow native vegetation to compete more effectively with the invasive species. This requires a permit. Spot treatment with glyphosate in late fall can be used to make this method more effective

<u>*Herbicides:</u> It is highly recommended that small populations try to be controlled using nonchemical methods where feasible. However, for large infestations, and for a few plants herbicide use is essential. Apply herbicides carefully to avoid non-target plants, glyphosate is the least environmentally damaging herbicide in most cases. Add food coloring for visibility, and a soapbased sticker such as Cide-Kick. Glyphosate is ineffective on some plants; for these, triclopyr or Garlon 3a may be indicated. When using herbicides read the entire label and observe all precautions listed, including proper disposal. If in doubt, call your local Cooperative Extension Service.

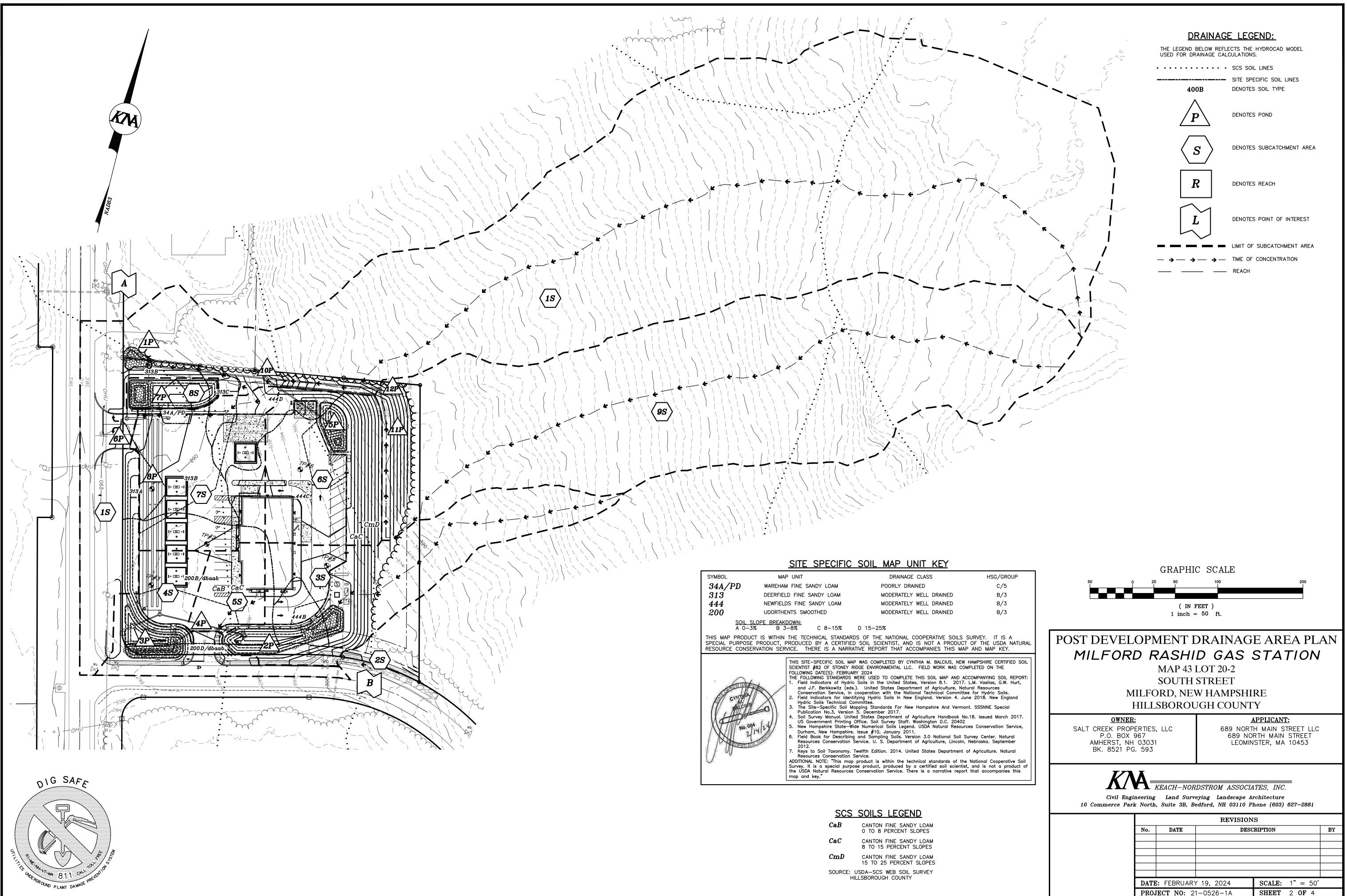
CONSTRUCTION NOTES:

1. THE PURPOSE OF THIS PLAN IS TO SHOW THE PROPOSED GRADING AND DRAINAGE SYSTEMS FOR THIS SITE.

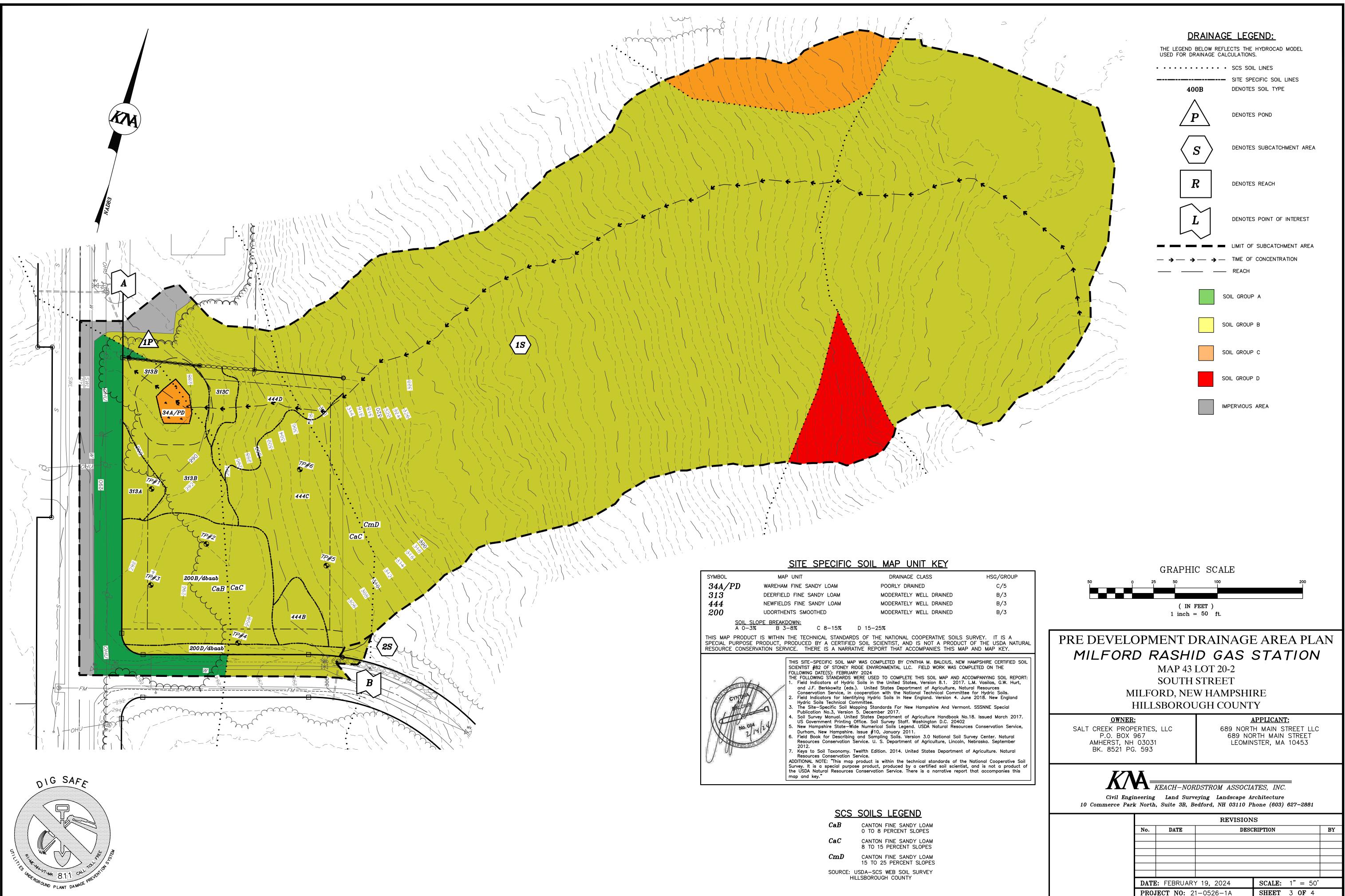
- 2. ALL WORK SHALL CONFORM TO THE APPLICABLE REGULATIONS AND STANDARDS OF THE TOWN OF MILFORD, AND SHALL BE BUILT IN A WORKMANLIKE MANNER IN ACCORDANCE WITH THE PLANS AND SPECIFICATIONS. ALL WORK PERFORMED IN THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY SHALL CONFORM TO THE STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION, APPROVED AND ADOPTED 2010 ARE HEREBY INCORPORATED BY REFERENCE.
- 3. SEE DETAILS FOR DRAINAGE SPECIFICATIONS.
- H. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING AND DETERMINING THE LOCATION, SIZE AND ELEVATION OF ALL EXISTING UTILITIES, SHOWN OR NOT SHOWN ON THESE PLANS, PRIOR TO THE START OF ANY CONSTRUCTION. THE ENGINEER SHALL BE NOTIFIED IN WRITING OF ANY UTILITIES FOUND INTERFERING WITH THE PROPOSED CONSTRUCTION, AND APPROPRIATE REMEDIAL ACTION TAKEN BEFORE PROCEEDING WITH THE WORK. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING "DIG SAFE" AT 811 AT LEAST 72 HOURS BEFORE DIGGING.
- 5. ALL DRAINAGE PIPE SHALL BE INSTALLED FOLLOWING MANUFACTURER'S INSTALLATION INSTRUCTIONS.

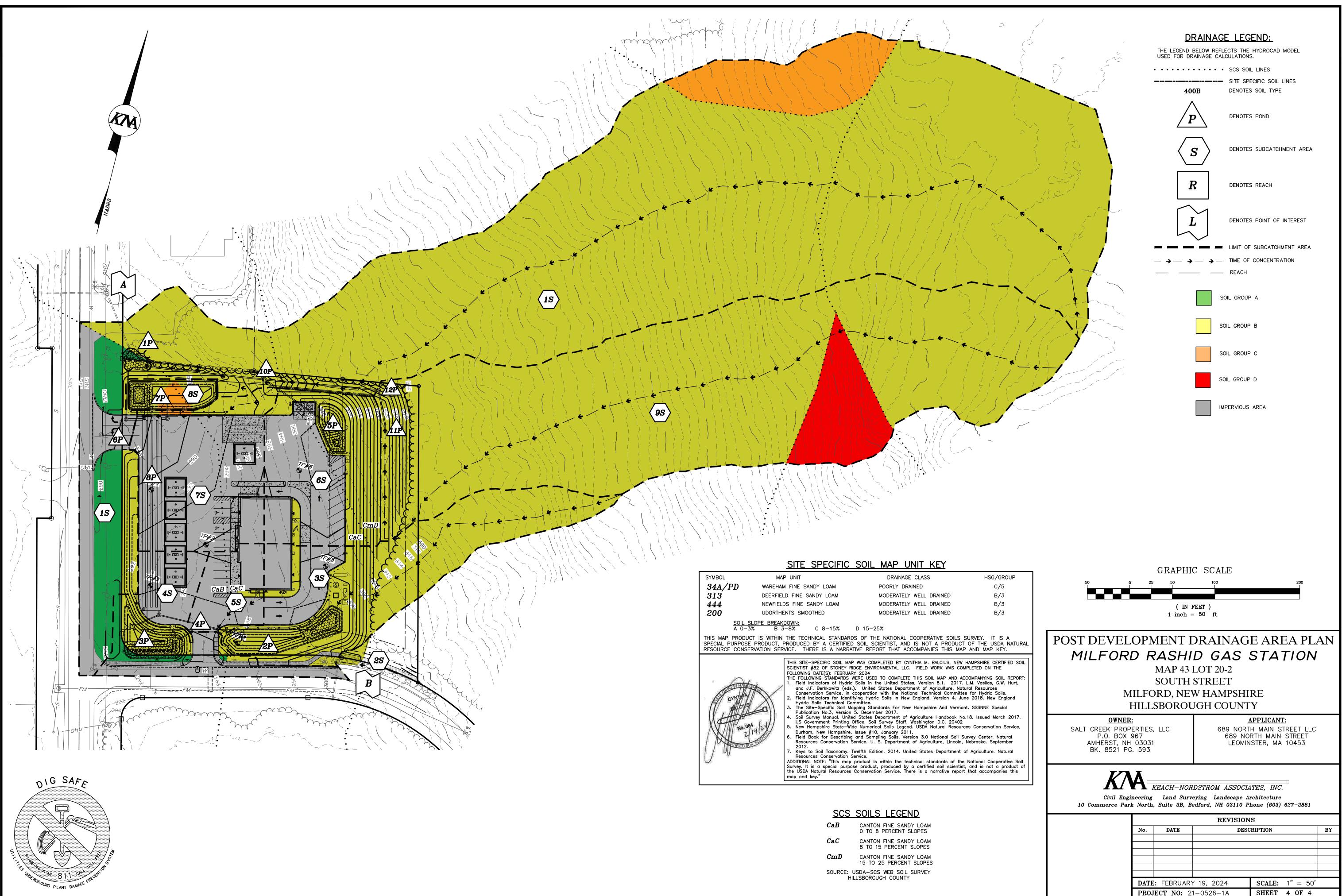

	SITE SPEC	IFIC SOIL M	<u>AP UNIT KEY</u>		
SYMBOL	MAP UNIT		DRAINAGE CLASS	HSG/GROUP	
34A/PD	WAREHAM FINE SANDY LOA		ORLY DRAINED	C/5	
313	DEERFIELD FINE SANDY LO		DERATELY WELL DRAINE		
444 200	NEWFIELDS FINE SANDY LO. UDORTHENTS SMOOTHED		DERATELY WELL DRAINE DERATELY WELL DRAINE	•	
	SLOPE BREAKDOWN:	MOL	VENATELT WELL DRAINE	ь _В / з	
A 0-	3% B 3-8% C 8-1				
SPECIAL PURPOS	ICT IS WITHIN THE TECHNICAL S E PRODUCT, PRODUCED BY A C ERVATION SERVICE. THERE IS A	ERTIFIED SOIL SCIENT	IST, AND IS NOT A PR	ODUCT OF THE USDA NATU	JRAL
CYNTON CYNTON No.0 2	 SCIENTIST #82 OF S FOLLOWING DATE(S): THE FOLLOWING STAI Field Indicators of and J.F. Berkkow Conservation Ser Field Indicators of Hydric Soils Tecl The Site-Specific Publication No.3, Soil Survey Manu US Government New Hampshire Durham, New Hd Field Book for D Resources Conse 2012. Keys to Soil Tax Resources Conse Survey, It is a specific 	TONEY RIDGE ENVIRONME FEBRUARY 2024 NDARDS WERE USED TO of Hydric Soils in the U witz (eds.). United Stat vice, in cooperation with for Identifying Hydric Soi hnical Committee. c Soil Mapping Standard, version 5. December 2 ual. United States Depar Printing Office. Soil Sun State-Wide Numerical Si sumpshire. Issue #10, Jan Describing and Sampling ervation Service. U. S. D konomy. Twelfth Edition. ervation Service.	NTAL LLC. FIELD WORK W COMPLETE THIS SOIL MAP nited States, Version 8.1. as Department of Agricultu to the National Technical Co Is In New England. Version s For New Hampshire And 017. tment of Agriculture Handt ey Staff. Washington D.C. bils Legend. USDA Natural buary 2011. Soils. Version 3.0 National epartment of Agriculture, I 2014. United States Depar in the technical standards duced by a certified soil	AND ACCOMPANYING SOIL REPO 2017. L.M. Vasilas, G.W. Hurt, re, Natural Resources ommittee for Hydric Soils. A 4. June 2018. New England Vermont. SSSNNE Special pook No.18. Issued March 2017	DRT:
	Ci Ci Ci	0 TO 8 PE aC CANTON FI 8 TO 15 P mD CANTON FI	NE SANDY LOAM RCENT SLOPES NE SANDY LOAM ERCENT SLOPES NE SANDY LOAM PERCENT SLOPES EB SOIL SURVEY		
		GRAPH	IIC SCALE		
	30 Q	15 30	60	120	
		,	FEET) = 30 ft.	97-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
			- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1		
	MILFOR	D RASH MAP 43 SOUTH IILFORD, NI	PRAINAGE ID GAS LOT 20-2 I STREET EW HAMPSH OUGH COUN	STATION IRE	
	<u>Owner</u>	-		APPLICANT:	
	SALT CREEK PROP P.O. BOX AMHERST, NH BK. 8521 PG	967 03031	689 N	TH MAIN STREET LLC DRTH MAIN STREET NSTER, MA 10453	
	10 Commerce Parl	neering Land Su	DRDSTROM ASSOCI rveying Landscape Bedford, NH 03110	•	
	WHITH NEW NA		REVISIO	NS	
	PAUL PAUL CHISHOLM No. 15076	No. DATE	DES	CRIPTION	BY
	En No. 15076				
	E Comen				
	MILLO MALE BOLD				
	" [[[]]]]] []]	DATE: FEBRUA	RY 19, 2024	SCALE: $1" = 30'$	
		DROIFCT NO.	01 0506 14	SUFET 5 OF 20	

PROJECT NO: 21-0526-1A


SHEET 5 **OF** 20

20. APPENDICES


NON-RESIDENTIAL SITE PLAN SET (22" X 34" – COLORLESS) PRE-DEVELOPMENT DRAIN AREA PLAN (22" X 34" – COLORLESS) POST-DEVELOPMENT DRAIN AREA PLAN (22" X 34" – COLORLESS) PRE-DEVELOPMENT DRAIN AREA PLAN (22" X 34" – COLOR) POST-DEVELOPMENT DRAIN AREA PLAN (22" X 34" – COLOR)



<u>SCS</u>	SOILS LEGEND
CaB	CANTON FINE SANDY LOAM 0 TO 8 PERCENT SLOPES
CaC	CANTON FINE SANDY LOAM 8 TO 15 PERCENT SLOPES
CmD	CANTON FINE SANDY LOAM 15 TO 25 PERCENT SLOPES
	JSDA-SCS WEB SOIL SURVEY LLSBOROUGH COUNTY

<u> </u>	JUILD LLULIND
CaB	CANTON FINE SANDY LOAM 0 TO 8 PERCENT SLOPES
CaC	CANTON FINE SANDY LOAM 8 TO 15 PERCENT SLOPES
CmD	CANTON FINE SANDY LOAM 15 TO 25 PERCENT SLOPE
	USDA-SCS WEB SOIL SURVEY LLSBOROUGH COUNTY

<u>SCS</u>	SOILS LEGEND
CaB	CANTON FINE SANDY LOAM 0 TO 8 PERCENT SLOPES
CaC	CANTON FINE SANDY LOAM 8 TO 15 PERCENT SLOPES
CmD	CANTON FINE SANDY LOAM 15 TO 25 PERCENT SLOPES
	USDA-SCS WEB SOIL SURVEY ILLSBOROUGH COUNTY